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Abstract 
 

Biochemical leaf photosynthesis models are evaluated by laboratory results and 
have been widely used at field scale for quantification of plant production, 
biochemical cycles and land surface processes. It is a key issue to search for 
appropriate model structure and parameterization, which determine model 
uncertainty. A leaf photosynthesis model that couples the Farquhar-von 
Caemmerer-Berry (FvCB) formulation to four different leaf temperature models is 
used to investigate the photosynthetic characteristics across a range of temperature 
gradients using both light (A-Q) and CO2 response curves (A-Ci). We used the 
Bayesian approach to fit the model to trial data of C3 crop plants (soybean, wheat) 
in the North China Plain and estimated key photosynthetic parameters, such as the 
maximum carboxylation rate of Rubisco (Vcmax25), the potential electron transport 
rate (Jmax25), leaf dark respiration in the light (Rd25), mesophyll conductance (gm25) 
and the kinetic parameter of Rubisco (Г*25) at a reference temperature of 25 °C. 
The results showed that 1) the model with moderate complexity showed the best 
goodness of fit, while conversely the simpler and more complex models were 
under and over fitting with their corresponding data, respectively; 2) the non-
peaked Arrhenius temperature response, which including both light and CO2 
responses data gave the best estimates for the key parameters among the four 
models; and 3) the temperature gradient used to verify the model has greatly 
improved the estimation of six key parameters (Jmax25, Vcmax25, Rd25, Г*25, Kc25, gm25) 
with relatively more narrow confidence intervals (CIs) and showing regular 
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variation on temperature gradient. Overall, this method offers an accurate basis for 
estimating leaf photosynthesis parameters and may enhance the accuracy of 
canopy, ecosystem and even global vegetation models.  
 
Keywords: A-Q curve; A-Ci curve; Arrhenius temperature equation; Leaf 
photosynthesis model; WinBUGS.  
 
Abbreviations: Vcmax25, maximum carboxylation rate of Rubisco; Jmax25, 
potential electron transport rate; Rd25, dark leaf respiration in the light; gm25, 
mesophyll conductance; Г*25, the kinetic parameter of Rubisco; gi, infinite 
CO2 transfer conductance; Kc25 & Ko25, the Michaelis-Menten constant for 
CO2 and O2 binding by Rubisco; E(EJ, EV, EGstar, Egm, Erd, Ekc, Eko), 
activation energy parameters; H(HJ, HV, Hgm), deactivation factor; ΔS (ΔSJ, 
ΔSV, ΔSgm), entropy factor; AIC, Akaike’s Information Criterion; BIC, 
Bayesian Information Criterion; CIs: confidence intervals.  
 
Introduction 
 

Crop growth is constrained by many abiotic stresses, among which 
climatic conditions (solar radiation, rainfall and temperature) have 
significant impacts on crop production and are spatially variable (Roderick 
and Farquhar, 2002; Salazar-Gutierrez et al., 2013; Calama et al., 2013). In 
addition, increasing atmospheric CO2 concentrations may directly promote 
photosynthesis and decrease transpiration through the response of stomata 
to CO2 concentration (Medlyn et al., 2001; Yu et al., 2004), thereby 
decreasing soil water uptake and increasing water use efficiency (Lawlor 
and Mitchell, 1991; Parry et al., 2004; Hosaini et al., 2009). Canopy 
photosynthesis plays a key role in determining biomass accumulation and 
partitioning to leaves, stems, roots and storage organs. Many crop models 
such as APSIM use light use efficiency to calculate canopy photosynthesis 
(Timlin et al., 2006; Keating et al., 2003), which may be too simplified to 
capture interactive impacts of climate change and CO2 concentration on 
food production. Therefore, it is prospected to integrate biochemical 
photosynthesis modules into crop models for climate change impact 
assessment (Yu and Flerchinger, 2006).  

Process-based photosynthesis models have received increasing attention 
due to their important role in quantifying ecosystem production and 
vegetation-climate interactions (Caemmerer, 2000; Oijen et al., 2005). One 
of the frequently used models is the Farquhar-von Caemmerer-Berry 
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(FvCB) photosynthetic model (Farquhar et al., 1980; Miao et al., 2009; 
Patrick et al., 2009; Zhu et al., 2011). FvCB model includes many 
parameters that cannot be directly measured. Fitting model against field 
leaf-gas exchange measurements to derive the values of key parameters is a 
normally used. Parameter estimation is a critical and complex issue and the 
goal of parameter estimation is to determine a set of parameter values to fit 
the model outputs to observed or trial data, so that parameterization can be 
viewed as an optimization issue or an inverse problem. Two methods exist, 
traditional optimization algorithms (e.g. ordinary least square regression, 
Gauss-Newton, steepest descent, the Levenberg-Marquardt algorithms) and 
modern intelligent methods (e.g. implementations of Bayesian statistics, 
genetic algorithms) (Malakoff, 1999; Patrick et al., 2009; Zhu et al., 2011). 
Statistical optimization methods commonly minimize an objective function 
such that best-estimate parameter values are obtained by reducing the sum 
of the square of residuals between observed and predicted data. In  
linear systems this method is more suitable, but in nonlinear systems  
(e.g. photosynthesis model), parameters are sensitive to initial conditions, 
suggesting the solutions may stabilize at ‘local’ optima rather than “global” 
optima (Miao et al., 2009). The number of identifiable parameters in 
process-based ecosystem model is low with traditional optimizing 
algorithms (Su et al., 2009). Bayesian approach has the potential to 
overcome these issues. It incorporates prior information to determine the 
likelihood that a given model can explain the measured data via a posterior 
function. Additionally, it provides a close approximation of the global 
solution with the mean and confidence intervals for each parameter 
(Barnard, 1958; Malakoff, 1999; Braswell et al., 2005). And the particular 
focus of this study is on how the data sources and models can be coupled 
within a Bayesian modeling framework.  

Over the past few decades, fitting of photosynthetic CO2 responses  
(e.g, an A-Ci curve) has been a common method for estimating leaf 
photosynthesis parameters under diverse conditions (Wullschleger, 1993; 
Idso et al., 1994; Caemmerer, 2000; Leuning, 2002; Manter and Kerrigan, 
2004; Su et al., 2009; Zhu et al., 2010) in many plant physiology models 
(Harley et al., 1992). However, the choice of method to fit A-Ci curves has a 
substantial effect on the final value of key parameters, such as Vcmax (i.e., the 
maximum rates of carboxylation under Ribulose-1, 5-bisphosphate (RuBP) 
saturation), Jmax (i.e., the potential light-saturated electron transport rate)  
and infinite CO2 transfer conductance gi (Ethier and Livingston, 2004). 
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Furthermore, incorporation of light response (A-Q) data can improve the 
estimation of some key parameters (e.g., dark respiration Rd, the CO2 
compensation point Г*, mesophyll conductance gm) (Yu et al., 2002; Patrick 
et al., 2009) and enhance estimation of parameters from A-Ci curves (e.g. 
the parameter Jmax is limited by Ci, irradiance and temperature). Although 
rarely incorporated into parameter estimation in leaf photosynthetic models, 
the integration of A-Ci and A-Q data could result in more credible posterior 
means and smaller confidence intervals (Patrick et al., 2009).   

The interactions among light, CO2 and temperature in leaf photosynthesis 
models make it a challenging task to determine representative parameter 
values. The FvCB model has approximately 10 independent equations 
including about 20 parameters. Consequently, a Bayesian optimization 
approach is useful for model-data parsimony (Hu and Bentler, 1995; Mulaik 
et al., 1989). In this study, we used a Bayesian approach to fit parameters 
for photosynthesis in C3 crops (soybean and wheat) from A-Q and A-Ci 
curves using the revised FvCB biochemical-based model of leaf-level 
photosynthesis. The objectives of this paper are to (i) evaluate the Patrick 
model in irrigated crops, (ii) test the model structures with diverse 
complexities under a temperature acclimation gradient and (iii) identify  
the best model-data model to balance goodness of fit (high value of  
log-likelihood) against model complexity and estimate the key parameters 
of leaf photosynthesis at a standardized temperature 25 °C.  
 
Materials and Methods 
 
Experiment  
 

This study was conducted at Yucheng Agricultural Experiment Station 
(36° 50′ N, 116° 34′ E, 28m a.s.l.), which is located in the North China Plain 
and affiliated with Chinese Ecosystem Research Network (CERN). Enough 
water and nutrients were applied in the croplands (Yu et al., 2002; Yu et al., 
2004). Two types of C3 crops, wheat (Triticum aestivum cv. 39-118) and 
soybean (Glycine max) were sown in October 24th 2012 and April 15th 2013, 
respectively. The light and CO2 response curve data of wheat was  
measured on sunny days during 15-26 May 2013 and that of soybean was 
measured on 17-30 July 2013 and 29-31 May 2014. Thermal acclimation of 
photosynthesis was evaluated in soybeans during 29-31 May 2014. A-Ci and 
A-Q curves were measured at two saturation intensity levels (1400 and 2000 
μmol m-2 s-1) and four leaf temperatures (27, 30, 35 and 40 °C) (Figure 1). 
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Figure 1. The light and CO2 responses of photosynthesis (a1, a2) of soybean under  
different temperature and the changes in maximum photosynthetic rates with temperature 
(Yucheng, 29-31 May 2014).  
 

Light and CO2 response curves were measured on one leaf per seedling 
from 9:00 to 11:30 and 14:30 to 17:00 (total of 5 seedlings) using a Li-6400 
portable photosynthesis system (Li-Cor, Lincoln, NE, USA). To reduce 
measurement errors, only the most recent fully expanded leaves were used. 
Each leaf was measured twice, first for A-Q and then for A-Ci curves. 
Relative humidity was kept at 60% and leaf temperature was maintained at 
initial levels throughout the measurement period (28-35 °C for wheat, 27-40 
°C for soybean). Leaves were placed in a cuvette for 15 min to reach steady-
state conditions for CO2 exchange at light saturation (2000 μmol m-2 s-1) 
before measuring the A-Ci and A-Q curves. Intercellular CO2 response 
curves were measured under saturated irradiance and at 10 increasing levels 
of CO2 concentration (Ci: 20, 60, 80, 120, 160, 200, 400, 600, 800 and 1000 
μmol mol-1). Light response curves were measured under an ambient CO2 
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concentration (380 μmol mol-1) and at 14 increasing levels of light intensity 
(Q: 0, 40, 60, 80, 100, 200, 600, 800, 1000, 1200, 1400, 1600, 1800 and 
2000 μmol m-2 s-1).  
 
Model Description 
 

Measurements of CO2 assimilation rate (An), intercellular CO2 pressure 
(Ci), photosynthetic quantum flux density (Q), leaf temperature (Tleaf) and 
atmospheric pressure (P) were used as driving variables to force the two 
models in this paper. We adopted the Bayesian model that proposed by 
Patrick et al. (2009) for the parameter optimization and uncertainty analsysis 
of photosynthetic model, hereafter referred to as POT09. At the core of the 
model, a non-rectangular hyperbola was used for the FvCB biochemical 
model of photosynthesis in C3 plants (Ethier and Livingston, 2004). With a 
non-rectangular hyperbola, the additional curvature parameter η is related to 
the critical Ci (Ccrit) at which the function shifts from linear increase to flat 
(Gilmanov et al., 2003; Stoy et al., 2006), thereby representing the transition 
from limitation of photosynthesis by small Ci (e.g. the RuBP-saturated 
assimilation rate, Ac) to limitation by regeneration of RuBP at large Ci  
(e.g. RuBP-limited net CO2 assimilation rate, Aj) (Patrick et al., 2009). 

In FvCB, photosynthesis is determined by the most limiting factor to 
assimilation rate: 
 

 
A  min Ac ,Aj                                                                                              (1) 

 
where Ac is estimated when Ci < Ccrit and Aj when Ci > Ccrit. The list of 

equations used in the FvCB photosynthesis process model for determining 
Ac and Aj (Farquhar et al., 1980; Farquhar and Wong, 1984; von 
Caemmerer, 2000) were recently derived and compiled in Table 2 of Patrick 
et al. (2009). The limiting rate of photosynthesis, either Ac or Aj, is 
determined as a quadratic equation of three parameters, whose solutions are 
positive roots as following:  
 

  
Ac ,j 

b b2  4ac
2a

                                                                                     (2) 
 

where a is the negative, inverse rate of mesophyll conductance in either 
case. The second and third parameters (b, c) represent processes that limit 
photosynthesis:  
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*                                                                               (4) 
 

where the functions represented by τ and ϕ depend upon whether 
photosynthesis is limited by Rubisco activity (Ac) or by electron transport 
(Aj).  

For calculation of Ac, τ is Vcmax and ϕ represent the degree of 
photorespiration (i.e., uptake of O2 by Rubisco) as (1 + [O2]) Kc ∕ Ko, in which 
Kc and Ko are the Michaelis-Menten constants of RuBisCO for CO2 and O2, 
respectively. To determine [O2], the partial pressure of O2 was assumed to 
remain 21 kPa. In Aj, τ is one-quarter of the rate of electron transport (J ∕ 4) 
and ϕ is 2Γ*. The rate of electron transport in FvCB is also determined as a 
quadratic function (McMurtrie et al., 1992; Patrick et al., 2009): 
 

  
J 

QPSII  Jmax  QPSII  Jmax 2  4QPSII Jmax

2
                                                (5) 

 
where θ is an empirical curvature factor (0.7; Evans, 1989) and QPSII is 

the fraction of photosynthetically active radiation (Q) absorbed by PSII. 
QPSII is equal to α (1 - f) Q ∕ 2, where α was set to 0.85 (von Caemmerer, 
2000) and the spectral light quality factor f was set to 0.15 (Evans, 1987).  

A central feature of POT09 is the temperature dependence of the 
photosynthetic parameter space {Kc, Ko, Г*, gm, Rd, Vcmax, Jmax} (Bjorkman 
et al., 1980; von Caemmerer, 2000). POT09 uses two temperature 
dependence schemes: peaked and non-peaked. The non-peaked function 
follows an Arrhenius exponential response to increasing temperature 
(Harley et al., 1992; Wullschleger, 1993). In all parameter estimations, 
temperature dependence was standardized to 25 °C (von Caemmerer, 2000; 
Leuning, 2002; Medlyn et al., 2002; Kattge and Knorr, 2007; Johnson et al., 
1942; Harley et al., 1992; Zhu et al., 2010). Patrick et al. (2009) found that 
the peaked function, in which each parameter has an optimal temperature, 
above which parameter values again decline. For example, gm increases 
exponentially with temperature to a peak within the range of 35 °C to 37.5 
°C, above which gm starts to decline (Bernacchi et al., 2002). Thus, POT09 
uses a peaked temperature response function in addition to the Arrhenius 
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function by adding two parameters: Hß is the deactivation energy (i.e., the 
rate of decrease at temperatures above the optimum temperature) and ΔSß is 
an entropy factor. 

Following POT09, we computed parameters for four FvCB 
photosynthesis models: two temperature response functions (non-peaked 
and peaked) and two data sources (A-Ci alone and A-Ci combined with  
A-Q). Hereafter, implementations using data from only A-Ci curves will be 
denoted as models I and II for exponential and peaked temperature 
responses, respectively. Likewise, exponential and non-peaked temperature 
responses will be denoted as models III and IV, respectively, when referring 
to incorporation of data from both curves (Table 1).  
 
Table 1. The statistic result for four model-data combinations. 
 

Data A-Ci A-Ci & A-Q 
Model Non-peaked T Peaked T Non-Peaked T Peaked T 
Combination I II III IV 

AICc 204.7 198.1 495.2 575.1 Model Validation R2 0.996 0.997 0.989 0.978 
Notes: r2 values for observed versus predicted photosynthesis, obtained from the Bayesian 
model using A-Ci data only and combined A-Ci and A-Q data with either non-peaked or 
peaked temperature response functions for photosynthetic parameters.  
 
The Bayes approach 
 

Parameter values were optimized in POT09 using a Bayes approach, 
which can be used to address multiple sources of variability present at 
different scales or levels (Kyveryga et al., 2013). In the Bayes approach, a 
probability distribution function (PDF) based upon prior information P(β) is 
combined if available with the probability of obtaining the data given the 
model parameters P(X�β), to determine the probability of obtaining the 
model parameters given the data (i.e., the posterior probability P[β�X]):  
 

 
P  X  P  P X                                                                                   (6) 

 
When no prior information is available, a non-informative P(β) can be 

assigned (e.g., multivariate normal). However, a large body of prior 
information exists in the photosynthesis literature (e.g., Michaelis-Menton 
and Arrhenius parameters; von Caemmerer, 2000; Patrick et al., 2009), thus 
P(β) can better constrain estimation of parameters.  
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Among the advantages of Bayesian in POT09, the data function P(X�β) 
is divided into two components: the observation function and the process 
equation based upon FvCB. The error (σ) between measurements of 
photosynthesis and model predictions was assumed to be independent and 
normally distributed with mean zero:   
 

  

P X   N
2

exp 
yi  f xi   2

2 2
i1

N


















                                                   (7) 

 
where yi is the observation and f(xi�ß) is the model prediction given the 

covariate xi belonging to a set X of N observations and the parameter set ß. 
Because P(β) and P(X�β) are multivariate normal and conjugates, P(β�X) 
is also normally distributed.  

Bayesian analysis was performed using the Windows version of BUGS 
(Bayesian inference Using Gibbs Sampling, WinBUGS). WinBUGS is a 
fully extensible modular framework for constructing and analyzing 
Bayesian probability models that conducts the Bayesian analysis of 
complex statistical models through Markov-chain Monte-Carlo (MCMC) 
methods. The Metropolis-Hasting (MH) algorithm, a version of the 
MCMC technique, was adopted to generate a representative sample of 
parameter vectors from the posterior solution (Lunn et al., 2000; Yu and 
Meyer, 2006; Ntzoufras, 2009; Ke´ry, 2010). Following POT09, we set a 
burn-in period of 4000 iterations that were discarded from all summary 
statistics. Excluding burn-in samples, we tested 5,000, 10,000, 20,000 
iterations to reduce the uncertainty of parameters and to infer the 
complexity of the parameter space.  
 
The model selection criteria 
 

"Information Criteria" provide an indication of the ability of a statistical 
model to fit a given dataset. Two such criteria are Akaike’s Information 
Criterion (AIC) and the Bayesian Information Criterion (BIC), both of 
which integrate the number of unknown parameters and the complexity of 
the model space. AIC and BIC are more accurate when the number of 
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observations is large or the number of parameters (n) is small, clearly as n 
increases, the BIC favors the simpler models with fewer parameters, which 
resulting in the AIC and BIC indices’s disagree (Sotirios and Fernando, 
2013). Therefore, a modified version of AIC with a correction for finite 
sample sizes (AICc) is preferred if the ratio of the number of observations to 
parameters is smaller than 40:1 (Burnham and Anderson, 2002), although 
AICc has a large penalty for extra parameters. In our study, the AICc 
between simulated and measured leaf photosynthesis rates was selected as 
an indicator of the calibration efficiency of the MCMC method.  

The absolute value of AICc for a given model includes an arbitrary 
constant, thus an estimate of the absolute model fit is unobtainable. 
However, AICc is an effective metric for comparing the relative 
performance of two or more models. When comparing fitted objects, the 
smaller the AICc, the better the fit. For example, when the difference in 
AICc values between two models is larger than 10, the model with a worse 
fit can be removed from the selection process; a difference of 2 or less 
means models are roughly the same quality of fit (Burnham and Anderson, 
2004; Yu and Meyer, 2006). The function of AICc is given as:  
 

  
AICc  2log L 

2 K 1 N
N  K

                                                                          (8) 

 
In the case of ordinary least squares regression or analysis of variance, 

the posterior likelihood ratio L can be caculated by the following equation, 
 
log( ) ( 2) log( )L N RSS N                                                                        (9) 
 
Thus, 
 

log( ) 2 ( 1) ( )CAIC n RSS n N K N K                                                   (10) 
 

where RSS denotes the residual sum of squares from the fitted model and 
N and K are the number of observations and parameters, respectively. 
Moreover, as a rule of thumb, simulations were run until a specific tolerance 
was reached; in this case our tolerance was the Monte-Carlo error (MC 
error) less than 5% of the sample standard deviation (SD).  
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Table 2. Classification of posterior estimates for parameters in the photosynthetic model 
obtained from Bayesian method using the temperature modules and data combinations. 
 

Parameter � � � � 
Jmax25 × √ √ × 
Vcmax25 × √ √ √ 
Rd25 × × √ × 
Г*25 × √ √ √ 
gm25 × × √ × 
Kc25 √ √ √ √ 
Ko25 - - - × 
EΓ* - - - × 
ERd - - - × 
Ekc - - - × 
Eko - - - × 
EV - - - × 
EJ - - - × 
Egm - - - × 
Hg - - - √ 
HJ - - - √ 
HV - - - √ 
∆Sg - - - √ 
∆SJ - - - √ 
∆SV - - - √ 

Notes: Combination I, II, III and IV are A-Ci with non-peaked or peaked temperature 
functions, both data (A-Ci combined with A-Q) with non or peaked temperature functions, 
respectively. Estimated parameters were well informed if the posterior estimates were in the 
range of prior CIs, showed regular variation on temperature gradient with relatively narrow 
CIs; poorly informed if the posterior estimates were similar to the prior means and had 
wide CIs; badly informed if the posterior estimates were out of the range of prior CIs with 
particularly large CIs. The signs √, -, × stand for well, moderately and poorly informed 
parameters, respectively.  
 
Results 
 
Model and data selection 
 

Figure 2a shows a positive relationship between the computation time 
and the model complexity for all four iteration lengths. The time taken to 
reach convergence used by models I, II and III are close, (especially for 
models I and II) while model IV took longer time than the others (24000 
iterations), approximately 4 times longer than model III. The values of 
AICc for the four models in their respective order are 204.7, 198.1, 495.2 
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and 575.1 (Table 1), although the differences in AICc between the models 
were relatively low, caution is still needed to verify that the MCMC 
method based on the Yucheng gas-exchange data can yield biologically 
significant estimations of parameters. The ratio of four models for eight 
key parameters shows that this criterion (MC error/SD) gives similar 
results comparing to AICc (Figure 2b): Neither model I nor IV appear as 
an inappropriate choice since both cannot give an effective estimation of 
key parameters (Table 2) and model IV costs too much time to calculate 
(Figure 2a). Additionally, both comparison of AICc and MC error/ SD 
among models informs us both under-fitting (model I) and over-fitting 
(model IV) were not the appropriate choice, it appears that only the 
moderate models (II and III) in this exercise are the most favorable 
candidates (see also Figure 4). Moreover, the ratio value of model II was 
very close to threshold value 0.05, while model III performed best, almost 
all parameters of it were far away from the threshold except only one 
value. Finally, model III was chosen as the most suitable model that 
incorporates temperature, light and CO2 responses, while remaining 
parsimonious. Combined with the non-peaked T function and both A-Ci 
and A-Q data, model III gives the most reliable estimation values for these 
parameters (Table 2). High values of R2 confirm that this coupled 
Bayesian photosynthetic model fit the data well for the bean and wheat; 
and prediction chart of model III shows that points in the plots of 
observed-versus-predicted photosynthetic rates fell tightly along the 1:1 
line (Figure 3).  
 
The posterior distribution of photosynthetic parameters of model III 
 

The parameters of FvCB model were determined from random draws 
from the posterior solution for each model over successive iterations until 
convergence was reached. Discarding the burn-in period, summary statistics 
(mean and variance) were determined from binning the remaining chains to 
infer probability density functions (PDFs) for each estimated parameter. 
Below we outline the results relating to the posterior solutions of the 
parameter set used in model III.  

In this study, the energy activation parameters (E), the peaked 
temperature-response parameters of deactivation (H) and entropy factor 
(∆S) were poorly estimated; a consequence of constrained prior distributions 
(see Table 3). The main reason for this result is that these peaked parameters 
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(H and ∆S) are not incorporated into the non-peaked Arrhenius temperature-
response function, which can be estimated well only through light and CO2 
curve data that itself has peaked temperature responses (Table 2 model IV).  
 

 
 

Figure 2. The four iterative calculations, 1000, 9000, 14000, 24000, respectively (a); the 
ratio (MC error / SD) of four combinations for eight key parameters (b). Note: red, green 
and black colors stand for the value is higher, close to and much lower than the threshold  
p-value 0.05, respectively.  

 

 
 
Figure 3. Comparison of measured (Aobs) and model III predicted (Apred) values of CO2 
assimilation. The parameter values are estimated from Bayesian optimization using both 
wheat and soybean data at Yucheng Agricultural Comprehensive Experiment Station during 
15-26 May and 17-30 July 2013, respectively and ** stands for 0.01 significance level.   
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Figure 4. The boxplot of key parameters in 30,000 iterations of four temperature models  
(I, II, III, IV). 
Note: The limits of each box represent the posterior quartiles, while the middle bars the 
posterior mean. The ending of the whisker lines represent the 2.5% and 97.5% posterior 
percentiles. While the horizontal reference line represents the posterior mean estimated 
from all nodes depicted in the plot. Additionally, 1.2.3.4 means different four data-sets.  
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The estimation results of remaining six key parameters of crop plants 
(bean and wheat) by model III gives the plots of posterior distribution of 
these parameters corresponding to the means and 95% CIs (i.e., 2.5th and 
97.5th percentiles) (Figure 4). The posterior distribution indicated that the 
mean of all key parameters were updated well by MCMC procedure, but the 
posterior means of gm25 and the kinetic properties of RuBisCO (Г*25,  
Kc25, Ko25) standardized to 25 °C with relatively broad CIs (and thus of 
higher uncertainty) gave no big differences with the prior median. This 
demonstrated that these parameters were less identifiable under less 
informative priors and thus the posterior means of these four parameters can 
be held relatively constant for C3 plants at a temperature of 25 °C. While the 
main photosynthetic parameters (e.g., Vcmax25, Jmax25 and Rd25) had relatively 
narrow credible intervals, the posterior mean of Vcmax25 for soybean and 
wheat ranged from 124.5 to 127.3 and from 118.8 to 131.4 μmol m-2 s-1. 
Jmax25 for soybean and wheat ranged from 202 to 301 and from 190.4 to 
229.1 μmol m-2 s-1. Rd25 for soybean and wheat ranged from -1.0 to 0.4 and 
from 0.6 to 1.7 μmol m-2 s-1, respectively. 
 
Model validation of Temperature gradient of model III 
 

We validated model III by testing it ‘out of sample’ along a temperature 
gradient using a separate, independent soybean dataset (from May 29 to 31, 
2014). This temperature gradient had peak temperatures of a range, 27, 30, 
35, 40 °C and light-saturation intensities of 1400 μmol m-2 s-1 for the A-Q 
curves, CO2-saturation concentration of 1000 μmol m-2 s-1 for the A-Ci 
curves, respectively (Figure 1). Additionally, both A-Q and A-Ci curves 
were measured along the same gradient but with different peak temperatures 
(see b1 and b2 in Figure 1), for instance, the peak photosynthetic rate of the 
A-Ci curve was reached at a temperature of 35 °C and then followed by  
30, 40 and 27 °C. The posterior PDFs of all parameters calculated by the 
Bayesian method are listed in Table 4. The only poorly informed parameters 
found here are those relating to activation energy, the peaked temperature 
parameters and Ko25. The estimation of the other six parameters are greatly 
improved with the inclusion of a temperature gradient, with an interesting 
shift in mean value and a narrowing of the CIs with a change in temperature 
(especially evident for Vcmax25). With increasing temperature, the mean of 
Rd25 increases while the means of Г*25 and gm25 decline. The values of 
Vcmax25 and Jmax25 increase with temperature and reach a peak at 35 °C and 
then drop at 40 °C, which is exactly the opposite behavior seen with Kc25.  
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Discussion 
 
Maximum rate of electron transport Jmax and maximum carboxylation rate 
Vcmax 
 

The Bayesian method is able to derive the photosynthetic characteristic 
parameters for C3 crops using the diurnal CO2 gas-exchange and 
environmental temperature gradient data. This was especially evident  
with the two main parameters representing photosynthetic capacity, Vcmax 
and Jmax. For example, regarding soybean, Vcmax varied from 88 (T=27 °C, 
Q=1400 μmol m-2 s-1) to 134 μmol m-2 s-1 (T=31 °C, Q=2000 μmol m-2 s-1) 
and for Jmax values varied from 138 (T=40 °C, Q=1400 μmol m-2 s-1) to 238 
μmol m-2 s-1 (T=35 °C, Q=1400 μmol m-2 s-1). However these values are 
dependent on the choice of the chosen temperature function. The posterior 
means of Vcmax and Jmax determined for soybean and wheat are similar to 
these from Wullschleger (1993), especially for the soybean (Glycine max). 
When Q is 1400 μmol m-2 s-1, corresponding Vcmax at a temperature of 27 °C 
is 88 μmol m-2 s-1, very close to that of Harley and Sharkey (1991), but 
smaller than that of Parkhurst and Mott (1990). Additionally, Jmax is a little 
larger than seen in other studies (Parkhurst and Mott, 1990; Harley and 
Sharkey, 1991) and is so for all other values determined from the 
temperature gradient. When Q reaches 2,000 μmol m-2 s-1, the calculated 
values of both soybean (Glycine max) and wheat (Triticum aestivum)  
are similar to the estimates of soybean for Jmax and Vcmax with 210 and 160 
μmol m-2 s-1 (Pearcy et al., 1997), but they are generally larger than those 
values determined for Q<2,000 μmol m-2 s-1 (Table 5).  

The posterior solution for photosynthetic parameter values were sensitive 
to different model structures (affecting the likelihood probability), plant 
types (affecting prior assumptions) and data-sets. Various functional 
responses have been used to describe the temperature dependence of Vcmax 
and Jmax, such as exponential functions (Farquhar et al., 1980; Harley et al., 
1992) and the third-order polynomials (Kirschbaum and Farquhar, 1984). 
The ratio of Jmax and Vcmax is not constant with temperature, which  
varied from 1.97 to 2.68 (Kirschbaum and Farquhar, 1984) and has been 
further evidenced by Leuning (1997). Based on a non-peaked Arrhenius 
temperature function, the ratio of Jmax and Vcmax varied from 1.36 to 2.5 in 
line with both of the above-mentioned studies (see Table 5).  
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Posterior distribution for parameters in the FvCB photosynthesis model 
 

Our posterior estimates for the activation energy, the Michaelis-Menten 
constant of Rubisco for O2 and the temperature parameters were poorly 
informed by the photosynthetic data used, such that they were primarily 
constrained by the choice of prior distribution. Thus, eliciting prior valuable 
information distributions for the Bayesian method for these parameters is 
important to obtain correct estimations of the interested parameters (Tuyla 
et al., 2008; Patrick et al., 2009; Zhu et al., 2011). Furthermore, the values 
of these parameters cannot give an effective estimation solely through 
photosynthetic data. So that, these non-incorporate peaked temperature-
response parameters and ‘insignificant’ energy activation parameters E 
(poorly estimated by four models, Table 2) could be considered as constant 
at standard 25 °C, reducing the degrees of freedom and simplifying the 
model, but this conclusion cannot simply apply to other temperature 
conditions. Given that certain parameters are invariant across the models, 
model complexity can be reduced by fixing these parameters, for example 
ERd at 63.9 KJ mol-1, Hv and HJ of 200, Hgm of 437.4 KJ mol-1, Ko25 of 
16600 μmol mol-1 (Leuning, 1997; Bernacchi et al., 2001; Leuning, 2002; 
Medlyn et al., 2002; Ethier and Livingston, 2004; Sharkey et al., 2007). 
These values agree with Von Caemmerer (2000), where such parameter 
values were generally fixed among higher C3, moreover, substantial 
controlled-condition experiments on interest species of these parameters are 
still needed in further studies to study their characteristics.  

Rd25, mitochondrial respiration standard to 25 °C, if assumed independent 
of light intensity and CO2, will lead to incorrect estimates of photosynthesis 
if carbon dioxide is being recycled within the leaf (Tenhunen et al., 1976). 
This bias of estimates may be attributed to the linear initial portion of 
carbon dioxide response curves due to mesophyll resistance to carbon 
dioxide transfer (Jones and Slatyer, 1972). Consequently, estimates of the 
magnitude of residual respiration were made by both A-Q and also several 
A-Ci curves to a point below zero net photosynthesis. Moreover, both 
Patrick et al. (2009) and Zhu et al. (2011) used a Bayesian approach to 
parameterize the same photosynthetic model and they confirmed that the 
addition of A-Q data with A-Ci data can give biologically viable estimates of 
Rd25 as the diurnal course of Q improves the estimations. The parameter 
estimation using only A-Ci data may give negative value for the posterior 
mean for Rd25, which gives wider CIs and is slightly lower than the Bayesian 
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method (Von Caemmerer, 2000; Bernacchi et al., 2001; Dubois et al., 2007). 
The best estimates of the key parameters besides Rd25 were from the method 
with both A-Q and A-Ci data, using non-peaked temperature response 
(Arrhenius) equation.  
 
Conclusion 
 

The moderate complexity of the revised FvCB (Ethier and Livingston 
type) model with non-peaked Arrhenius temperature module is appropriate 
for the model-data fusion with two data sets (A-Ci data set or both A-Ci and 
A-Q data sets), while too simple or too complex model-data fusion are  
sub-optimal (leading to either under-fitting or over-fitting) for parameter 
estimation. Application of a temperature gradient to verify the model greatly 
improved our estimation of five key parameters (Jmax25, Rd25, Vcmax25, Г*25, 
Kc25, gm25). Posterior means of these parameters showed regular variation on 
temperature gradient with relatively more narrow CIs. However, inclusion 
of the temperature gradient data did not improve the estimation of Ko25 and 
temperature parameters (E, H, S). Therefore, it is advisable to use constant 
values of these parameters at standardized temperature 25 °C. Finally, we 
confirm that the Bayesian method coupled with A-Q curve data at different 
temperatures (like the diurnal or seasonal temperature variation) could be a 
good complement to the A-Ci curve fitting method to parameterize the 
photosynthetic model. These parameter values can be a measure of 
photosynthetic capacity and status of growth influenced by changing 
environment.  
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