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Landslide hazards are relatively frequent in the mountainous regions of 
Northern Iran. This research aimed to utilize the potential application of a 
GIS-based multi-criteria decision-making model (MCDM) to evaluate and 
map landslide susceptibility in the Arabdagh forests, Golestan Province, 
Northern Iran. A ground truth landslide map including 78 points was 
prepared using aerial photographs and high-resolution satellite images and 
field surveys. The landslide influencing factors maps were produced and 
used as independent layers in the analysis. The landslide susceptibility map 
of the study area was produced by weighted linear combination (WLC) 
model based on AHP weights of factors. The resulting landslide 
susceptibility map was classified into five relative susceptibility zones 
according to the natural break method: very low, low, moderate, high, and 
very high with an area of 5.1%, 26.1%, 31.7%, 24.4%, and 12.8% of the total 
study area, respectively. The validation of the susceptibility map was 
performed using receiver operating characteristics (ROC) and area under the 
curve (AUC). The validation results showed an AUC of 0.852 (85.2%) with 
a standard error of 0.036. The susceptibility risk in the areas covered by 
shrub and herb where high and very high, respectively. 
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Introduction 

Natural hazards can result in many losses 
to properties and human life and wildlife 
(Feizizadeh and Blaschke, 2011). Landslides 
are a significant natural hazard (Skilodimou 
et al., 2018) that refer to a wide variety of 
processes that cause the downward and 
outward movement of slope-forming 
materials including rock, soil, artificial hill, 

or a combination of these (Crosta and 
Clague, 2009). Landslides lead to damages 
to settlements, roads, forests, and 
agricultural fields and other infrastructures 
and cause casualties to the people living in 
the affected areas (Althuwaynee et al., 
2012). Over the last decade, landslide 
incidences have increased (Kim et al., 2018) 
with their direct and indirect effects 
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including soil loss, damage to ecosystems, 
and destruction of forests (Kamranzad et al., 
2015). Up until September 2007, about 
4,900 landslides have been recorded and 
mapped in Iran causing a lot of damage 
(ILWP, 2007; Pourghasemi et al., 2013a). 
Various parameters cause a landslide that 
could be used to provide the landslide 
susceptibility zonation. Some of these 
parameters are topographic (Youssef et al., 
2016), vegetation (Sarda and Pandey, 2019), 
soil (Jarjani et al., 2018), hydrological 
conditions (Kim et al., 2018), and geological 
parameters (Jarjani et al. 2018). Other 
parameters may as well play as triggering 
landslides, including heavy rainfall (Bera et 
al., 2019), and anthropogenic activities 
(Youssef et al., 2016). It is impossible to 
prevent the occurrence of natural disasters 
and disturbances. However, it is feasible to 
decrease the effects of natural hazards 
through proactive disaster mitigation 
planning and development of strategies and 
procedures (Ahmed et al., 2014). To reduce 
the damage caused by landslides, it is 
necessary to conduct a proper assessment of 
the potential damage due to landslides via an 
analysis of landslide-conditioning factors 
based on scientific knowledge and to pre-
manage selected areas where landslides are 
expected (Oh et al., 2010). In fact, landslide 
hazard zonation (LHZ) is characterized as 
the division of land surface into 
homogeneous regions and their ranking to 
degrees of potential hazard resulted from the 
mass movement of land materials (Varnes, 
1984; Guzzetti, 2005). 

Recently, different studies have been 
conducted on landslide hazard assessment 
and modelling using GIS and RS capabilities 
and techniques (Pradhan and Youssef, 2010; 
Pradhan et al. 2010a; Bednarik et al., 2012; 
Mohammadi et al., 2012; Pourghasemi et al., 
2013b; Devkota et al., 2013; Regmi et al., 
2014; Cárdenas and Mera, 2016; Hadmoko 
et al., 2017; Stanley and Kirschbaum, 2017; 
Mahdadi et al., 2018; Kamranzad et al., 
2015; Yılmaz, 2009). Moreover, since 
landslides are caused by different 
parameters, it is useful to create a landslide 
database using a Geospatial information 
system (GIS) (Oh et al., 2012). Using GIS as 
a basic analytical tool, in conjunction with 

suitable models has facilitated the 
identification and mapping of landslides 
(Hong et al., 2018a; Hong et al., 2018b; 
Nsengiyumva et al., 2018; Alvioli et al., 
2018). Numerous models and approaches 
have been applied for assessing landslide 
susceptibility which fall into four main 
groups: deterministic, heuristic, inventory-
based probabilistic, and statistical techniques 
(Committee on the Review of the National 
Landslide Hazards Mitigation Strategy; 
2004; Guzzetti et al., 1999). The heuristic 
approach applied in this research estimates 
the landslide potential from data on variables 
and their weights based on expert knowledge 
and opinions (Gupta and Joshi, 1990; Dahal 
et al., 2008b; Dahal et al., 2008a). The study 
area reported in this paper was formerly 
covered by deciduous broadleaf trees and 
almost half of it has been planted with 
coniferous species. Unfortunately, in recent 
years, this area has been severely affected by 
landslide damage, especially in the forested 
areas. 

 
Materials and Methods 
Study area 
 The study area, namely Arabdagh region is 
a mixed broadleaf and planted coniferous 
forest in the Golestan Province, Iran, with an 
area of 35 km2 (Figure 1). This area was 
formerly a deciduous broadleaf forest. About 
fifty percent of the area was replanted with 
coniferous species between 1986 and 1991. 
The Arabdagh area is a hilly-mountainous 
region as part of the Alborz mountain range 
with an altitude of 140 to 1000 m above 
m.s.l. The average annual precipitation is 
550 mm. The maximum slope in the area is 
54°, with an average slope of 15°. According 
to the Central Office of Natural Resources 
and Watershed Management of Golestan 
Province (CONRWMGP), maximum and 
minimum precipitation occurs in February 
(99 mm) and May (28 mm), respectively. 
The major vegetation types are Cupressus 
sempervirens var. horizontalis, Pinus pinea, 
Pinus sylvestris, Zelkova carpinifolia, Acer 
velutinum and Quercus castaneifolia and 
about 78% of the area is covered with dense 
forest (Forest Silvicultural plan of Arabdagh 
area, 2016). 
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Landslides 
 Providing the occurred landslide 

distribution map is the first step (Pradhan et 
al. 2010b; Hong et al. 2017; Hong et al. 
2016) for landslide susceptibility mapping. 
Therefore, several resources have been used 
for identification of landslide locations, 
including  field surveys using GPS, 
interpretation of Google Earth satellite 

images and pan-sharpened SPOT-6 imagery, 
and  recorded landslide positions by Iranian 
Landslide Working Party (ILWP) and 
Forestry, Rangeland and Watershed 
Organization (FRWO). A number of 78 
landslides were located in the Arabdagh 
region and saved as a point layer in GIS 
(Figure 1). Figure 2 is a picture of a 
landslide occurred in the study area. 

 

 
Figure 1. Location of the study area in the northern Iran and the  

distribution of the occurred landslides 
 

 
 

Figure 2. A landslide occurred in the study area 
 
Landslide influencing factors 
Twenty-one factors affecting landslides 
including topographic (slope, aspect, 
elevation, profile curvature, plan curvature, 
surface roughness, and lineament density), 
vegetation (tree density, crown density, 
volume, and stand types), anthropogenic 

conditions (distance to residential areas and 
roads), hydrological (drainage density, 
topographic wetness index (TWI), stream 
power index (SPI) and distance to rivers), 
soil (soil texture), climatic and 
meteorological parameters (average annual 
precipitation) and geology (distance to fault, 
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geology map) were selected and used for 
landslide analysis according to previous 
literature and landslide features. The 
identification of parameters causing 
landslide is the main step in the prediction of 
landslide susceptibility and risk assessment. 
The selection of landslide-conditioning 
parameters depends on different factors, like 
the nature and characteristics of the study 
area, landslide type, location, and scale of 
analysis, and previous knowledge of the 
main causes of landslides (Ayalew and 
Yamagishi, 2005). Additionally, in a GIS-
based study, access to data is important and 
parameters should also be practical, 
complete, measurable, non-uniform, non-
redundant, and well representing the whole 
study area (Ercanoglu and Gokceoglu, 
2002). Accordingly, the main data were 
collected from different sources (Table 1) 
and saved in a spatial database. For each of 

these landslide maps, the occurrence of 
landslides and their classes were determined. 

SPOT-6 images (1.5 m) from the summer 
of 2018, Google Earth, and field sampling 
were also used to generate the vegetation 
land cover map. Topographic factors, 
topographic wetness index, and hydrologic 
factors were extracted from DEM with a 
spatial resolution of 12.5 m. Many 
researchers have considered Stream Power 
Index (SPI) and roughness factors as 
secondary topographical attributes computed 
from two or more primary topographic 
attributes (Althuwaynee et al., 2012). Some 
layers such as distance to residential areas, 
drainage, rivers, faults, and roads were 
mapped by the Euclidean distance tool at a 
grid size of 10×10 meters. In the study area, 
21 parameters (Table 1) were selected for 
susceptibility analysis based on field 
surveys, landslide characteristics, and 
previous studies. 

 
Table 1. Different data sources in the study area 

Data Description Source 
Digital Elevation Model (DEM)- 12.5 m Download Https://earthexplorer.usgs.gov 

SPOT-6 Satellite Sensor (1.5m) Bought IMG_SPOT6_PMS_001_A: SPOT 6 2018-
07-06:06:43:23.2 ORTHO PMS 

Slope, Slope aspect, altitude, Curvature, 
Surface roughness, Topographic wetness 
index (TWI), Stream Power Index (SPI), 

river and Drainage Density 

Extract DEM 

Fault and Geology Digitized Geological map of Gonbad 1:100.000 
Road and Residential Area Digitized SPOT-6 Satellite and Google Earth 

Tree density, Crown density and Volume Interpolated Field Sampling 

Land Cover Type Interpreted, field 
surveying 

Visual interpretation of SPOT-6 satellite, 
Google Earth and field surveying 

Soil texture Digitized Soil map of Gonbad, 1:63000 
Rainfall Interpolated Synoptic gauges of Golestan province 

Lineament density extracted SPOT-6 satellite 

Landslide Location Different sources Historical Records, SPOT-6 Satellite, Google 
Earth and Field Sampling 

 
Topographic factors 
Slope, aspect, elevation, curvature, surface 
roughness, and TWI factors were calculated 
from DEM. The slope is one of the most 
important factors for stability assessment 
(Bera et al., 2019). As the slope increases, 
the stress in soil or other unconsolidated 
material generally increases as well (Lee et 
al., 2004). Steep slopes with plan concave 
shapes are generally most susceptible to 
landslides (Knapen et al. 2006). The study 
area were classified into four categories, 
steep (>30°), high (20°–30°), moderately 

high (10°–20°) and gentle (0°–10°). Aspect 
is related to parameters such as 
precipitation and sunlight exposure 
(Pradhan and Kim, 2014). An aspect map 
generally indicates the direction to which a 
mountain or hilly slope faces. In this study, 
the aspect of the slopes were divided into 
nine categories. Terrain elevation is an 
important factor to determine the landslide-
prone areas and affects numerous 
biophysical and anthropogenic factors. 
Elevation values were divided into four 
categories using intervals of 200 m. The 
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curvature indicates the morphology of 
topography. Positive, negative, and zero 
values in profile curvatures indicate that the 
surface is upward convex, concave, and 
flat, respectively (Pourghasemi, 2016). It 
refers to the amount of slope or aspect 
variations in a specific direction (Wilson 
and Gallant, 2000). The profile curvature 
map was prepared in SAGA software. The 
surface roughness map quantifies 
topographic heterogeneity (Bièvre et al., 
2016) and shows a factor that is commonly 
applied in the evaluation of landslide 
sensitivity (Abdulwahid and Pradhan, 
2017). The surface roughness was prepared 
using Eq. (1) and reclassified into five 
classes using natural breaks (Jenks) (0–
0.95, 0.95–1.82, 1.82–2.53, 2.53–3.46, 
3.46–7). 

(1) 
Topographic roughness= (Surface 

area)/(Planimetric area) 
 

Lineament mapping is an important part 
of structural geology, and reveals the 
architecture of the underlying rock 
basement and help understand the causes of 
landslides (Ramli et al., 2010). The 
lineament extraction involves both manual 
visualization and automatic lineament 
extraction through software (Mwaniki et al., 
2015). Various studies have been conducted 
on the application of filters (directional, 
Laplacian, and Sobel) on special bands or 
RGB satellite images to extract lineaments 
(Abdullah et al., 2013; Kavak, 2005; Hung 
et al. 2005). Lineament density was 
extracted from SPOT-6 images using the 
line density analyst extension and was 
classified into five categories. 
 
Anthropogenic factors 
Human activities strongly influence 
landslide susceptibility (Xing et al., 2014). 
Distance to roads and residential areas are 
considered as the main parameters, which 
increase the susceptibility to landslide via 
weakening of slope structure stability 
(Althuwaynee et al., 2012). 
 

Precipitation factor 
Rainfall is one of the main factors causing 
landslide (Sengupta et al., 2010; Claessens 
et al., 2007; Kwan et al., 2014). The rainfall 
distribution map was created for 21 years 
(1997–2018) of historical rainfall data 
collected from 6 gauge stations. The 
average annual precipitation intensity in the 
study area ranges from 440 to 650 mm. A 
higher amount of rainfall was found in the 
southeastern part of the study area. The 
statistical distribution of the accumulated 
average precipitation was prepared and was 
classified into five classes. 
 
Soil map 
Soil texture is an important factor that 
indirectly affects the whole environment of 
a particular area (Saklani, 2008). Soil 
characteristics affect the rate of water 
movement and the capacity of the soil to 
hold water. Soil physical features determine 
slope stability (Sidle and Ochiai, 2006). In 
the study area, three main types of soil 
texture were identified including Clay 
Loam, Silty Clay Loam, Clay, Clay Loam, 
and Rock. Soil texture layer was created by 
digitizing the soil texture map of the 
Golestan Province (1:100,000 scale) 
obtained from the Agriculture Department, 
Iran1. 
 
Hydrological factors 
Infiltration of rainfall into soil and run-off 
are significant factors affecting landslide 
occurrence (Pradhan and Kim, 2016). The 
proximity to drainage is another significant 
parameter for landslide susceptibility. In 
this study, the distance from the drainage 
map was classified into five categories. 
Drainage density is one of the main 
controlling factors of landslides because it 
changes the characteristic of the soil and its 
geotechnical properties (Pareta, 2004). 
Drainage density is the ratio of the total 
length of the stream to the area of the 
drainage basin. Drainage density is 
inversely related to the function of 
infiltration so that where drainage densities 
are higher; the movement of a surface flow 
                                                
1(http://jago.ir/HomePage.aspx?TabID=1& 
Site= Douran Portal &Lang=en-us 
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is faster (Cevik and Topal, 2003). The 
drainage density of the study area was 
classified into five categories. Another 
landslide-affecting topographic factor is 
TWI which is defined as ln (A/tanβ), where 
A is the upslope contributing area and β is 
the slope angle (Moore et al., 1991). TWI 
represents the spatial distribution of soil 
moisture (Pradhan and Kim, 2016). In this 
study, the TWI map was produced in 
SAGA-GIS software and divided into seven 
classes.  

The stream power index (SPI) is a 
measure of the erosive power of water flow 
based on the assumption that discharge is 
proportional to the specific catchment area 
(Pradhan and Kim, 2016). Also, SPI is 
considered a factor resulting in stability 
(Kim et al., 2018). Higher SPI values cause 
an increased risk of slope erosion (Moore et 
al. 1991). In this study, the SPI was 
calculated from the slope and catchment 
area using the following equation (Eq. 2).  

 SPI=As*TagB                            (Eq. 2) 
 where, As is the specific catchment area 
(m2) and B is the slope (in degrees). 

   
Vegetation factors 

Impaired and converted land covers 
cause excessive damage from landslides 
and other natural hazards, while the 
presence of vegetation mitigates rainfall-
induced landslide potential (Dahigamuwa et 
al., 2016). Besides topographic, 
lithological, and hydrological 
characteristics, the vegetation cover can 
improve the stability of the slope by 
mechanically reinforcing the soil and 
positively influencing its water balance. 
Landslide susceptibility is decreased in 
stands with smaller distances from trees and 
where gap lengths are small (Moos et al. 
2016). Some researchers have proven the 
positive influences of forest characteristics 
such as vegetation density on landslide 
assessment (Vergani et al., 2012; Mao et 
al., 2014). The Arabdagh area has 12 
vegetation cover types: Cupressus 
sempervirens var horizontalis, Cupressus 
arizonica, Pinus brutia, Pinus pinea, Pinus 
sylvestris, Zelkova carpinifolia, Carpinus 
betulus, mixed hardwood, mixed softwood, 

mixed hardwood and softwood, agricultural 
area, and herb-shrub areas. Other vegetation 
factors such as volume, crown cover, and 
tree density were measured in the field and 
interpolated to the whole area using the 
Kriging method and classified in the 
specified categories. 
 
Geological factors 
Landslides are greatly affected by the 
lithological properties of a land surface 
(Pradhan and Kim, 2016). The lithology 
map and fault lineaments were digitized 
and extracted from the 1:100000 geological 
map. Geologically, the Arabdagh area 
consists of two lithological formations, 
including JMZ and GAL. JMZ Formation 
consists of grey thick-bedded limestone and 
dolomite and QAL formation compromises 
stream and braided channel and flood plain 
deposits. The fault is another factor that 
affects resistance-related elements of 
bedrock (Chen et al., 2017). It has a close 
relationship with slope instability (Dai and 
Lee 2002). The likelihood of occurrence of 
landslides is related to the distance from 
faults (Pradhan and Lee, 2010a). The 
distance to fault map was divided into ten 
categories. 
 
Susceptibility mapping 
We used the analytical hierarchy process 
(AHP) to derive weights of the factors. In 
the process, relative rating values ranged 
from 0 to 9, which were considered for 
subclasses of the layers, where higher rating 
represents a higher effect on landslide 
occurrence. Computing weights for the 
landslide conditioning maps is a basic 
requirement multi-criteria decision making 
(MCDM) (Parsons and Frost, 2000). In 
fact, AHP is used to acquire a priority scale 
for factors when handling multi-criteria 
decisions (Pourghasemi et al., 2012). 
Decomposition, comparative decision, and 
a combination of priorities are the main 
principles of AHP (Basu and Pal, 2017). 
This procedure has been widely used in 
different fields such as site selection, 
suitability analysis, and landslide 
susceptibility mapping (Ayalew et al., 
2005; Hasekioğulları and Ercanoglu, 2012). 
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The standard scale for using the AHP 
method has been given in Table 3, where 
value 3 is assigned to the class with the 
least influence, and value 9 is assigned to 
the class with the maximum influence. 
Since an expert’s judgment can violate the 
transitivity rule and thus result in an 
inconsistency, the consistency ratio (CR) is 
used to check the consistency of the 
comparison matrix and CR (Eq. 3 and 4) 
values below 0.1 are considered acceptable 
(Ayalew et al., 2004). 

 

                                              (3)  
where CI (Eq. 4) is the consistency index 
calculated as: 

 (4)                           
 

where n is the order of the matrix and max 
is the major value of the matrix. 

Random index (RI) was derived from a 
sample of randomly generated reciprocal 
matrices and is dependent on the size of the 
matrix as given in (Table 2). 

 
Table 2. Random index value (Saaty, 1990) 

n 1 2 3 4 5 6 7 8 9 10 
RI 0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51 

 
After preparing map of layers affecting 

landslide and calculating their weights 
using AHP (Table 3), the layers were 
combined through weighted linear 

combination method (WLC) to generate the 
landslide susceptibility map using Eq. 5. 

(5)                             
 
Table 3. Scales for pairwise comparisons (Saaty, 2005, 1977) 

Intensity of Importance Description 
1 Equal importance 
3 Moderate importance 
5 Strong or essential importance 
7 Very strong or demonstrated importance 
9 Extreme importance 

2, 4, 6, 8 Intermediate values 
Reciprocals Value for inverse comparison 

 
In equation 5, LSI represents the final 

score, Ri is the rating classes, Wi is the 
weight for each landslide-conditioning 
factor and n is the number of landslide 
factors (Gorsevski et al., 2006a).  

The WLC technique is a popular method 
that is applicable and appropriate for the 
flexible combination of qualitative and 
quantitative thematic layers and is one of 
the most commonly used GIS-MCDA 
method (Feizizadeh and Blaschke, 2013). It 
is also one of the most used decision 
models for landslide susceptibility and 
natural hazard zoning and mapping due to 
its reliance on expert knowledge.  

The map derived through WLC was 
divided into five susceptibility categories 
(very low, low, moderate, high, and very 
high) based on the natural break method. 

The validation step is an essential stage in 
evaluating the accuracy of the susceptibility 
map. For this we used the receiver 
operating characteristic (ROC) curve and 
area under the curve (AUC) (Roodposhti et 
al., 2014; El Jazouli et al., 2019; Guo et al., 
2015). This is achieved through comparing 
the map obtained from the WLC and the 
landslide inventory map. The AUC of the 
ROC curve supplies a diagnosis that can be 
used as a statistical measurement of the 
performance.  

The AUC value of the ROC curve, 
ranging from 0.5 to 1.0, is a numeric index 
of map accuracy (Holsinger et al., 2016). In 
some studies, the AUC has been divided 
into five qualitative categories, including 
excellent (0.9–1.0), good (0.8–0.9), fair 
(0.7–0.8), poor (0.6–0.7), and fail (<0.6), 
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which is represented by the diagonal 
straight line (Vakhshoori and Zare, 2016). 

The methodological flowchart of the study 
is presented in Figure 3. 

 

 
Figure 3. Flowchart of the study 

 
Results and Discussions 
In this study, a GIS-based AHP as a  
multi-criteria evaluation approach (MCE) 
was used to develop a landslide 
susceptibility map for the Arabdagh area. 
To achieve this objective, 21 landslide 
inducing variables were employed, namely 
topographic factors (slope, slope aspect, 
elevation, plan and profile curvatures, 
surface roughness, and lineament density), 
hydrological factors (drainage density, 
topographic wetness index (TWI), stream 
power index (SPI) and distance to rivers), 
climatic and meteorological parameters 
(mean annual precipitation), vegetation 
factors (crown density, tree density, volume 
and vegetation type), anthropogenic 
conditions (distance to residential areas and 

distance to road), soil factor (soil texture), 
and geology parameters (distance to fault, 
lithology, and geology). The AHP is a 
multi-criterion decision-making approach 
that allows factors to be weighted and 
performed in the decision-making process 
(Bera et al., 2019; Feizizadeh and Blaschke, 
2013). The resulting pairwise comparison 
matrix for the groups and contributing 
factors and their relative weights were 
extracted from AHP analysis based on 
expert judgments (Table 4). Accordingly, 
the slope, volume, drainage density, 
distance to faults, and roads were the most 
important landslide causative factors, 
respectively. The resulting consistency 
ratios (CR) were acceptable for the groups 
and factors.  
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Table 4. Scales for pairwise comparisons (Saaty, 1990; Roodposhti et al. 2014) 
Groupe Causative factors Normalized weight values 

Topographic 

Elevation 0.0279 
Slope 0.4103 

Slope aspect 0.2136 
Profile curvature 0.1283 
Plan curvature 0.0605 

Surface roughness 0.1213 
Lineament density 0.0381 

 Consistency Ratio (CR)=0.05 

Hydrology 

Distance to river 0.06 
Drainage density 0.5286 

TWI 0.2643 
SPI 0.1471 

 Consistency Ratio (CR)=0.01 
Soil type Soil type Consistency Ratio (CR)=0 

Land cover 

Forest type 0.2754 
Volume 0.5495 

Tree density 0.1134 
Crown closure 0.0618 

 Consistency Ratio (CR)=0.08 

Geology 
Geology 0.358 

Distance to fault 0.642 
 Consistency Ratio (CR)=0 

Climatic and meteorological Average annual precipitation Consistency Ratio (CR)=0 

Anthropogenic 
Distance to residential area 0.35 

Distance to road 0.65 
 Consistency Ratio (CR)=0 

 Main groups  
Topographic  0.3543 
Hydrology  0.2399 
Soil type  0.1587 

Land cover  0.1036 
Geology  0.0676 

Climatic and meteorological  0.448 
Anthropogenic  0.0312 

  Consistency Ratio (CR)=0.02 
 

Landslide-inducing thematic layers were 
integrated using weights of groups, factors, 
and sub-classes determined by experts 
using the AHP method to produce the 
landslide susceptibility map. The weighted 
map was classified into five susceptibility 
categories such as very low (2.2–3.6), low 
(3.6–4.2), moderate (4.2–4.7), high (4.7–
5.2), and very high (5.2–6.7) based on the 
natural break classifier method (Figure. 4). 
The area percentages of each class are 
displayed in Figure 5. 

Very low, low, and moderate landslide 
susceptible areas represented 5.1%, 26.1%, 
and 31.7% of the total study area, 
respectively. Figure 18 demonstrates that 
37.2% (1317.32 ha) of the study area has 
high- to very high landslide hazard potential. 
Therefore, the moderate susceptibility class 
accounts for the largest area (31.7%), based 
on the landslide susceptibility map (Figure 
10). The landslide vulnerability is in the 

west, northeast, and Northwest parts of the 
study area near drainage network (0–400 m). 
These results follow closely findings of other 
studies (Ahmadi et al. 2005; Mohammadi 
and Pourghasemi, 2017). Our results can be 
attributed to the high humidity in the north 
and west of the study area. Most of the high 
and very high zones of the landslide 
potential map included slopes between 10 
and 30 degrees. Low and high slopes have 
no significant effect on landslide occurrence 
due to reduced gravity force and decreased 
soil depth, respectively. Higher susceptible 
areas were found in altitudes between 400 m 
and 600 m followed by 600 m and 800 m 
occupying 30.5% and 42.25% of the total 
area, respectively. The elevation influences 
on vegetation structure and air humidity in 
the curvatures, convex and concave classes 
demonstrate higher vulnerability than the flat 
areas. 
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Figure 4. The landslide susceptibility map  
 

 
Figure 5. The percentages of each class of the landslide  

susceptibility map in the study area 
 

These surfaces are always exposed to 
rain and other climatic conditions that 
loosen the soil (Oh et al., 2009). In the case 
of roughness, the values between 1 and 7 
refers to lower and higher topographic 
roughness in the study area, and the values 
between 2.5 and 3.5 indicate the most 
vulnerable classes for landslide 
susceptibility. In terms of distance from the 
fault, road, and residential areas, the very 
high landslide-prone classes are located in 
the near to medium distances, indicating the 
direct impact of land activities and 
anthropogenic interventions on landslide 
occurrence, respectively. The farther the 
distance from the fault and road, the lower 
the landslide risk probability. Some studies 
(Oh et al., 2009; Lee and Pradhan, 2007) 
have shown the inverse relationship 
between the distance from the fault and 
landslide susceptibility. SPI represents the 
material viscosity and the topography 
steepness (Althuwaynee et al., 2012). In 
this study, the values between 1.6 and 3.7 
demonstrate areas with high capability for 

landslide. A higher probability of landslide 
is obtained in areas with class QL in the 
geology map. This may be due to the 
dominant area of this class (80%). The soil 
texture with three classes showed that 
“Clay loam, Silty Clay Loam” soil texture 
classes were more inclined to landslide. 
Regarding forest characteristics including 
tree density, canopy density, volume, and 
type of vegetation cover, the highest 
landslide risk was obtained in classes 25.4–
527.5 and 750–964, 37–51 and 63–74 
percent, 0–120.3 cubic meter/ha, and herb 
and shrub lands, respectively. Forest 
variables reduce the likelihood of landslide 
risk. Rainfall is a landslide-triggering factor 
strongly influenced by the landscape and 
other specific environmental factors and 
leads to slope instability. Finally, class 2–
3.3 km/km2 in lineament factor, class 3–3.9 
km/km2 in drainage density map and class 
5.3–6.3 in TWI factor were very prone to 
landslide occurrence. For drainage density 
and TWI, landslide susceptibility values 
showed that when drainage density and 
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TWI increased, the probability of landslide 
increased too. To determine the accuracy of 
the landslide potential map, the map 
obtained from the WLC method and that of 
the landslide inventory were compared 

through the receiver operating characteristic 
(ROC) curve and area under the curve 
(AUC). The results showed 85.2% accuracy 
with a standard error of 0.036 for the WLC 
method (Figure 6). 

 

 
Figure 6. Receiver operating characteristic (ROC) curve of the landslide  

susceptibility map using the inventory data set 
 
Conclusion 
Landslide is an important natural 
phenomenon which has both direct and 
indirect impacts on people's livelihood and 
natural resources and brings about 
damaging consequences. The recognition of 
areas with a high probability of landslide 
risk and its mapping is the interests of 
responsible organizations and comprises the 
aims of this study. We used a GIS-Based 
multi-criteria decision analysis as a 
heuristic model, to develop a landslide 
susceptibility map with a case study of the 
Arabdagh area, Iran. This area is 
susceptible to frequent landslide 
occurrences, especially in years when the 
intensity of rainfall is high. To achieve this 
objective, the relative weights of the 
conditioning factors and their categories 
were extracted using AHP based on expert 
opinion and pairwise comparison matrix. 
Then the factors were combined using 
Weighted Linear Combination (WLC) 
method. Eventually, the performance of the 
model was validated using the receiver 
operating characteristic (ROC) curve and 
the area under curve (AUC). The AUC 
value of 85.2% indicated good accuracy of 
the landslide assessment and demonstrates 

that the selected landslide causing factors 
has been performed correctly. The resulting 
landslide susceptibility map was classified 
into five relative susceptibility zones 
according to the natural break method: very 
low, low, moderate, high, and very high 
with an area of 5.1%, 26.1%, 31.7%, 
24.4%, and 12.8%, respectively. Results 
showed that approximately 60.3% of the 
landslide's inventory points were located in 
the high and very high susceptibility zones. 
According to the classified landslide map, 
the susceptibility risk in the north and 
partly in the southern parts of the study area 
mainly represented by shrub and herb lands 
with high and very high values. The rest of 
the area with very low to moderate 
landslide vulnerability values covers the 
middle part of the study area, where the 
endemic broadleaf species and planted 
coniferous trees are established with high 
values of forest characteristics such as 
volume, canopy cover percentage, and tree 
density. The results of this research could 
be useful for forest managers in decision-
making and forestry plans management, 
land-use planning, and supporting efforts 
for mitigation of future landslide hazards. 
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