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The rainfall-runoff process is one of the most important and complex 

hydrological phenomena in the management of surface water 
resources and in taking appropriate measures in the event of floods 

and droughts. To simulate this process, a proper understanding of the 

behavior of the basin saves time and plays important role in model 

selection. To simulate the runoff process of the Karkheh catchment in 
Iran, statistical models and artificial intelligence approaches—

including Multivariate Linear Regression (MLR), Artificial Neural 

Network (ANN), Support Vector Regression (SVR), and Support 
Vector Regression-Wavelet (WSVR)—were applied on a daily time 

scale over the statistical period from 2010 to 2020. To assess 

simulation performance, statistical indices such as the coefficient of 

determination (R²), Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), Nash-Sutcliffe Efficiency (NSE), and percentage bias 

(PBIAS) were utilized. Results indicated that the studied models 

performed better in composite structures, with artificial intelligence 
models demonstrating lower error rates and superior performance 

compared to statistical models. Notably, the Wavelet Support Vector 

Regression model exhibited greater accuracy and reduced error 
relative to the other models. Overall, the findings suggest that hybrid 

artificial intelligence models are effective for modeling the runoff 

process and can serve as a suitable and efficient solution for water 

resources management. 
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Introduction 

Nowadays, various factors such as 

increasing population size and human 

activity have amplified water demand 
globally, inducing extensive changes in 

hydrological aspects of the catchments and 

overexploitations of rivers. Threats to 

humans and financial losses occur due to 

natural disasters such as floods. Various 

studies underscore that half of the world's 

countries are at risk of drought. On the 
other hand, the dangers of torrential rains 

have engendered the destruction of 

infrastructure in many parts of the world. In 
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these areas, the amount of surface runoff 

has increased due to increasing rainfall, 

leading to increased base flow in rivers and 
streams along with soil erosion. Therefore, 

to prevent, or at least decrease these events, 

it is crucial to simulate the river's flow, 

especially in terms of the rainfall-runoff 
processes (Wang et al. 2013). Correct or 

appropriate simulation of rainfall-runoff 

process is indispensable in water resources 
management. Due to the temporal and 

spatial variability of catchment features and 

precipitation patterns, rainfall-runoff is 

considered as the most complex nonlinear 
process in hydrology. 

    In recent years, different methods have 

been proposed to simulate the rainfall-
runoff process, including numerical models. 

In this technique, the accuracy and 

efficiency of model may be reduced as it is 
very difficult to achieve the number of 

variables in a catchment. Despite being 

simple in nature and widely used in 

predicting hydrological data, statistical 
models have somehow similar disadvantage 

(Nayak et al. 2004). Due to the constant and 

limited recording of nonlinear and non-
static hydrological data, they may not have 

desired accuracy (Parisuj et al. 2017). On 

the other hand, artificial intelligence (AI) 
method has recently been used to increase 

the accuracy of simulations in hydrological 

processes. Regarding AI models, equations 

and mathematical relationships may not be 
provided; moreover, the affecting physical 

variables cannot be effortlessly estimated. 

The objective of AI models is to develop 
valid relationships between the measured 

variables of the hydrological cycle, which 

are used to solve a hydrological problem. 

AI models estimate the desired output upon 
receiving input and performing a series of 

mathematical operations. The variables and 

coefficients  associated with these models 
are estimated based on observational input 

and output (target) data, thus making them 

dependent on input and output data in terms 
of both quantity and quality (Adnan et al. 

2021; Alizadeh et al. 2017; Nayak et al. 

2013; Nourani et al. 2019a, b; Dehghani 

and Torabi Poudeh 2021; Dehghani et al. 
2020a, b; Kesgin et al. 2020a, b; Ouma et 

al. 2021; Swathi et al. 2020; Tian et al. 

2021; Tikhamarine et al. 2020; Wu and 

Chau 2013; Xiang et al. 2020; Zare and 

Koch 2018). 
 Okkan et al. (2021) used AI models to 

evaluate the runoff process in the Gediz 

River in western Turkey. They employed 

two models, namely artificial neural 
networks (ANNs) and support vector 

regression (SVR), as well as monthly 

barometric and hydrometric station data. 
The study underlined a great performance 

in the simulation of runoff process. Indeed, 

a relative advantage in regard to the 

accuracy of the SVR model was asserted. 
 Ridwan et al. (2021) evaluated 

performance of Bayesian Linear Regression 

(BLR) models, Boosted Decision Tree 
Regression (BDTR), Decision Forest 

Regression (DFR), and Neural Network 

Regression (NNR) to simulate the Hulu 
Terengganu catchment runoff process 

located in Malaysia. Thence, they analyzed 

the flow and precipitation variables of a 

hydrometric station on a daily time scale 
during the statistical period of 2010–2020. 

Results emphasized that the BDTR model 

performs the best among all models. 
 In general, according to the outcomes of 

the previous relevant research, it is 

indispensable to provide a solution and 
ensure a proper prediction of surface water 

resources to prevent potential droughts all 

around the world and in Iran as one of the 

countries with the highest water challenges. 
In Iran, Karkheh catchment is of crucially 

importance in terms of drinking and 

agriculture, such that it is one of the most 
vital catchments for agricultural production. 

For the purpose of growth and 

development, the products of this plain are 

primarily fed by surface water. Excessive 
extraction of groundwater through pumping 

and deep digging in adjacency to rivers 

have caused a sharp decline in surface 
water resources in this catchment in recent 

years. Therefore, identifying the changes in 

precipitation and runoff are the sine qua 
non of predicting and taking management 

measures to improve the prediction 

efficacies. Therefore, the purpose of this 

study is to (a) analyze the rainfall-runoff 
process using climatic variables, e.g. 

precipitation, and integrated vector 
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regression models with wavelet transform 

(WT) as well as new optimization 

algorithms, e.g. innovative gunner and 
black widow spider, and (b) compare 

different modeling approaches, including 

hybrid and standalone AI techniques and 

statistical models. 

 

Materials and Methods  

Karkheh catchment in Iran was selected as 
the study area. It is located between 48º 10′ 

to 50º 21′ E and 31º 34′ to 34º 7′ N with an 

area of 59143 km2. The area extends from 

the western to the central and southwestern 
Zagros Mountains in the Persian Gulf 

region. It is bounded by the Sirvan, Sefid-

rud, and Ghareh-chai rivers in the north, the 
Dez catchment area in the west, and parts of 

the country’s western borders in the south. 

Average annual rainfall in the Karkheh 

catchment area ranges from 951 mm in the 
southern lowlands to 9111 mm in the 

northern highlands and eastern regions. 

Vegetation is sparse at lower altitudes but 

increases with elevation. Rainfall is higher 
in the northern and eastern regions of the 

catchment, with an average of 48.8% of the 

total precipitation occurring in winter, 
30.6% in autumn, 20.4% in spring, and only 

0.2% in summer. Figure 1 shows the 

geographical position of the selected four 

stations in Karkheh catchment area, namely 
Cham Anjir, Kashkan, Pole-zal, and 

Jologir. Table 1 presents the geographical 

data on these stations. 

  

 
Figure 1. Positions of the selected stations in Karkheh catchment 

 
Table 1. Geographical coordinates of Karkheh stations 

Station Length Width Area 

Cham Anjir 48º 14′ 38" 32º 26′ 37" 1140 

Kashkan 47º 53′ 39" 39º 19′ 52" 820 

Pole-zal 48º 9′ 32º 25′ 90 

Jologir 47º 43′ 32º 9′ 120 

 
Method 

To simulate the runoff load process of 
Karkheh catchment, 4 stations of the basin, 

constituting the most important hydrometric 

stations, were selected. Then, different 

models were defined to simulate the 
process. The statistical models and artificial 

intelligence approaches were employed to 

simulate the runoff precipitation process. In 

the modeling process, the statistical models 

were compared with individual models and 
then, the superior model was converted into 

a hybrid one with new optimization 

algorithms. Finally, the performance of the 

models was measured with different graphs. 
According to the recent research, different 

artificial intelligence models are used in the 

runoff process that are subject to errors. To 
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reduce the model error, the model setting 

parameters optimized via meta-heuristic 

algorithms. Several studies have employed 
a hybrid model including meta-heuristic 

algorithms. Here we have employed new 

algorithms not studied in hydrological or 

hydrogeological processes before for the 
purpose of reducing the difficulties and 

challenges. We have introduced a new 

algorithm to facilitate the simulation 
process, predict the runoff in future using 

dependent parameters, and prevent 

irreparable damage to Iran’s surface water 

resources. Making effective simulation and 
predicting of the runoff process is one of 

the most fundamental and important 

subjects in Iran’s water issues. 

 
Multivariate linear regression 

Regression analysis is a statistical method 
by which the relationship between two or 

more quantitative variables (independent 

variables or predictors) is studied to predict 
the dependent variable (response variable). 

A multivariate linear regression model is 

expressed as follows: 

 

𝑦 = ∑ 𝛽𝑖𝑋𝑖 + 𝜀𝑁
𝑖=1                                     (1) 

where β_i is the regression coefficient 

(regression parameters) X_i the 
independent variable, ε the eccentricity, and 

N the number of independent variables. The 

least squares method is used to estimate the 
regression coefficients (β_i). 

 

Artificial neural network 
Artificial neural networks are widely used 

in hydrological studies and water resources 

management (Nourani et al., 2009). The 

structure of the neural network usually 
consists of the input layer, the hidden layer, 

and the output layer. Input layer A is the 

transmitter layer and a means of providing 
data. The output layer contains the values 

predicted by the network and the middle or 

hidden layer, which consists of processor 
nodes, is the data processing site. The first 

viable application of artificial neural 

networks was detected through the 

introduction of multilayer perceptron 
networks. In these networks, it has been 

proven that among learning algorithms, the 

error propagation algorithm with feed 

network structure and three layers is 

satisfactorily used in solving complex 
engineering problems and facilitating the 

simulation and forecasting of hydrological 

time series (Norani et al., 2011; Tokar and 

Johnson., 1999). The most common 
stimulus functions used in reverse diffusion 

networks are sigmoid and hyperbolic 

tangent stimulus functions (Hornik, 1988).  

 

Wavelet transform 

Wavelet transform is proposed as an 

alternative method for short-time Fourier 
transform, and its purpose is to overcome 

the problems of frequency resolution power 

in short-time Fourier transform. In wavelet 
transform, similar to short-time Fourier 

transform, the signal is divided into 

windows and the wavelet transform is 
performed separately on each of these 

windows (Wang et al., 2000). However, the 

most important differences are that in 

wavelet transform, the frequency resolution 
of the signals or the length of the window 

changes in accordance with the type of 

frequency; simultaneously, the width of the 
window or the frequency scale varies in 

accordance with the type of frequency. In 

other words, the role of scale is of higher 
priority than frequency in wavelet 

transform. That is, wavelet transform is a 

form of time-scale transformation. 

Accordingly, by using wavelet transform, 
the signal can be expanded on high scales 

and its details can be analyzed; on low 

scales, the signal is contracted and the 
totality of the signal can be examined 

(Nourani et al, 2009). A wavelet is a small 

wave, part or window of the main signal 

whose energy is concentrated in time. By 
using wavelet transform or analysis, a 

mother signal or time series can be broken 

down into wavelets at different resolution 
levels and scales. Thus, wavelets are either 

translatable or dilated samples derived from 

the mother signals that oscillate in a finite 
length and are strongly damped (Nourani et 

al., 2018). Based on this important feature 

of wavelet transform, the timeless and 

transient time series can be analyzed locally 
(Shin et al., 2005). 
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Wavelet transform is defined in two forms 

of continuous and discrete. 

Continuous Wavelet Converter (CWT) 
The continuous wavelet transform of the 

function f (t) is defined through Equations 

(2) and (3) (Wang et al., 2000). 

 

(2) 

CWTf
ψ(s, τ) = Ψf

ψ(s, τ)

=
1

√|s|
∫ f(t)ψ∗ (

t − τ

s
) dt

+∞

−∞

= 〈f(t), ψs,τ(t)〉 

(3) ψs,τ(t) =
1

√|s|
ψ(

t − τ

s
) 

Equation (3) is a relation with two variables 

s and τ denoting the scale parameter 

(frequency inverse) and the transmission 

parameter, respectively. The * sign denotes 
a mixed conjugate. ψ is the function of the 

mother window or wavelet and 1 / √ (| s |) ψ 

((t-τ) / s) represents the wavelets resulting 
from the transmission and resizing of the 

mother wavelet (Wang et al., 2000). The 

word mother is used because all the 
translated and scaled versions (daughter 

wavelets) are totally derived from this 

function. That is, the mother wavelet is a 

pattern for other windows. The sign 〈…〉 

also indicates the multiplication of two 

functions in the signal space (Nourani et al., 
2019a; Karthikeyan and Nagesh Kumar, 

2013). 

 

Support Vector Regression 
The support vector machine is an efficient 

learning system based on the theory of 

constrained optimization which uses the 
inductive principle of structural error 

minimization and yields an overall optimal 

solution (Vapnik, 1995). In the SVR model, 
a function related to the dependent variable 

Y, which is itself a function of several 

independent variables x, is evaluated and 

measured. Similar to other regression 
problems, it is assumed that the relationship 

between independent and dependent 

variables with an algebraic function like f 
(x) along with some perturbation (allowable 

error (ε)) can be determined (Vapnik, 1998) 

as follows: 

f(x)=W 
T

.∅(x)+b                                     (4) 

y=f(x)+noise                                            (5) 

where WT is a transcript of the coefficients, 

constant b belongs to the properties of the 

regression function, and ∅ is the kernel 

function based on which the goal is to find 
a functional form for f (x). This is achieved 

by training the SVM model through a set of 

data (training set) (Misra et al., 2009). To 
calculate W and b, it is necessary to 

minimize the error function (Equation 6) in 

the SVM-ε model by considering the 
conditions (constraints) in Equations (7) 

and (8) (Hamel, 2009). 

 
1

2
W

T
  .W+C ∑ εi

N
i=1  +C ∑ εi

*N
i=1                 (6) 

W
T

. ∅ (Xi)+b-y
i
 ≤ ε+ εi

*    ,                          

(7)          

   y
i
-W

T
. ∅ (Xi)-b ≤ ε+ εi  , εi , 

εi
* ≥0   ,   i=1,2,…,N                                 (8) 

 

In the above equations, C is an integer and a 

positive number, which determines the 
penalty when an error occurs in model 

training. The kernel function is N (the 

number of instances and the two properties 

εi and εi
∗ are deficient variables(. Finally, 

the SVM regression function can be 

rewritten as follows: 

f(x)= ∑ α̅i
N
i=1 ∅(xi)

T. ∅(x)+b                     (9)  

In Equation 11, α̅i is the mean of the 

Lagrangian coefficients. Calculating ∅ (x) 

in its characteristic space can be very 

complex (Yoon et al., 2011). To solve this 
problem, the usual procedure in the SVM 

regression model is to select a kernel 

function as follows: 

   K(XJ ,X)=∅(Xi)
T√ b

2
-4ac                 (10)  

Different kernel functions can be used to 

build different types of SVM-ε. The types 

of kernel functions applicable to the SVM 

regression model include polynomial kernel 
1, Radial Base Function (RBF) kernel, and 

linear kernel, which are respectively 

calculated by the equations given below. 
Figure 2 shows the structure of the backup 

vector machine model. Given that the most 

widely used kernel functions are radial, 

linear, and polynomial (Vapnik and 
Chervonenkis, 1991), this study used these 

three kernel functions to constitute the 

vector regression model. The parameters of 
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the studied kernels C, t, and d converged to 

the optimal values using new ultra-

exploration algorithms and then, the hybrid 
model was investigated. It is noteworthy 

that the process of backup vector machine 

calculations was implemented based on 

coding in MATLAB environment and the 
kernel functions were optimized through 

trial and error. 

k(x,xj)=(t+xi.xj)
d
                                  (11) 

K(x,xi)=exp (-
‖x-xi‖

2

2σ2
)                       (12) 

k(x,xj)=𝑥𝑖 . 𝑥𝑗                                           (13) 

 

Evaluation Criteria and Comparison of 

Models 
In any project, certain criteria are employed 

to evaluate the efficiency of modeling. In 

the present study, different statistical 
criteria were employed to evaluate the 

efficiency of the models including the 

coefficient of determination (R2), Root 

Mean Square Error (RMSE), Mean 
Absolute Error (MAE), Nash-Sutcliffe 

Efficiency (NSE) coefficient, and Bias 

(Chai & Draxler, 2014; Legates & McCabe, 
1999). The value of R2 is in the range of [0-

1] and the closer it gets to one, the higher 

the prediction ability of the model will be, 
and vice versa. Zero suggests that the model 

does not define the variations of the 

response data around the mean value, while 

one implies that it defines all of them 
around the mean (Nagelkerke, 1991). Nash-

Sutcliffe Efficiency (NSE) coefficient is a 

normalized statistic that defines the relative 
value of residual variance in comparison 

with the variance of the measured data 

(Nash & Sutcliffe, 1970; Moriasi et al., 

2007). The NSE ranges between -∞<
𝑁𝑆𝐸 < 1 and the higher its value 

approaches one, the more optimized the 

answer will be. The values between zero 
and one are generally accepted as the 

acceptable performance ratings, while 

NSE≪0 suggests that the mean 

observational values point to higher 
predictive power than the estimated values, 

implying unacceptable performance of the 

model. This criterion is recommended by 
ASCE (1993) and its use is very common 

because it provides a vast array of 

information regarding the reported values 

(ASCE, 1993). The use of this criterion has 

been highly welcomed in different scientific 
fields and numerous researchers throughout 

the world are benefiting from it (Sevat & 

Dezetter, 1991; Kesgin et al., 2020). 

Percentage of Bias (PBIAS) measures the 
orientation of computational (simulated) 

data to their smaller or larger observational 

counterparts (Dabanli & Sen, 2018). The 
PBIAS value can be positive, negative, or 

zero. Zero suggests the optimal value and 

low-magnitude values point to the precision 

of the model in the simulation process. 
Positive and negative values denote the 

underestimation and overestimation of the 

model, respectively (Gupta et al., 1999). 
This criterion is favored more by the 

scholars in this field and applied by nearly 

all of them. It is also prevalent in most 
hydrological, water resource management, 

and geological studies (Musi et al., 2019; 

Pengxin et al., 2019). The above-mentioned 

criteria are derived through Equations (15-
19) presented here. 

 Besides the aforementioned statistical 

criteria, this study applies box plot ad 
Taylor’s diagram criteria, which are among 

the prevalent graphic approaches to visual 

comparison of the performance of models. 
Taylor’s diagram is presented in two 

different forms, namely a semi-circle 

displaying positive and negative 

correlations and a quadrant displaying only 
positive correlation. In both cases, the 

correlation coefficient values are in the 

form of the circle’s radius on its arch and 
the standard deviation values are displayed 

in the form of two concentric circles toward 

the center of the circle (Taylor, 2001; 

Pincus et al., 2008; Wehner, 2013). Boxplot 
was introduced by John Tokey in 1969 and 

it is one of the most widespread types of 

diagrams, displaying many descriptive 
statistics among the data. In other words, 

this plot facilitates visual comparison of 

different groups (Conti et al., 2014). 

𝑅2 = [
∑ (𝑀𝑜𝑖−�̅�0)(𝑀𝑒𝑖−�̅�𝑒)𝑛

𝑖=1

√∑ (𝑀𝑜𝑖−�̅�0)2.∑ (𝑀𝑒𝑖−�̅�𝑒)2𝑛
𝑖=1

𝑛
𝑖=1

]

2

, 0 ≤ 𝑅2 ≤ 1   

(15) 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑀𝑒𝑖 −𝑛

𝑖=1 𝑀𝑜𝑖 )2 0 ≤

𝑅𝑀𝑆𝐸 ≤ +∞                                         (16) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑀𝑒𝑖 − 𝑀𝑜𝑖| , 0 ≤ 𝑀𝐴𝐸 ≤ +∞𝑛

𝑖=1   

 

                     (17) 

NSE=1- 
∑ (𝑀𝑒𝑖−𝑀𝑜𝑖)2𝑛

𝑖=1

(𝑀𝑒𝑖−�̅�𝑒)2 , −∞ < 𝑁𝑆𝐸 < 1 

                                                            (18) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑀𝑜𝑖−𝑀𝑒𝑖)𝑛

𝑖=1

∑ 𝑀𝑒𝑖
𝑛
𝑖=1

× 100 , −100 ≤

𝑃𝐵𝐼𝐴𝑆 ≤ 100                                    (19) 

 

Discussion and results 

One of the most important steps in 
modeling is choosing the right combination 

of input variables. Therefore, first, the 

correlation between input and output 
variables was calculated and the input 

parameters were selected in order to 

achieve the optimal model for predicting 
the flow of rivers in the Karkheh catchment, 

as presented in Table 2. In this table, P (t) 

rainfall and Q (t) runoff were considered at 

times t-1, t-2, t-3, t-4. Considering that in 

the present study, the effect of the flow 
sequence specific to previous days was 

considered in predicting the daily flow rate, 

only the normalized flow rate data with a 

return sequence of up to 4 days were used 
as training data in different combinations 

according to the table. For convenience, 

they are called patterns. For this purpose, 
the data obtained from Cham-e-Fig, 

Kashkan, Pol-e-Zal, and Zalgir hydrometric 

stations located in Karkheh catchment with 

3650 records recorded during the period 
(2020-2010) on a daily time scale were 

used. Finally, 2920 records were selected 

for training and the remaining 730 records 
for validation of the studied models. It 

should be noted that 80% of the data for for 

training and the remaining 20% for testing 
were randomly selected to cover a wide 

range of data types (Kisi et al., 2006; Nagy 

et al., 2002). 

 
Table 2. Combinations of input variables for the best model selection 

Number Input Output 

1 P(t) Q(t) 

2 P(t), P(t-1) Q(t) 

3 P(t), P(t-1), P(t-2) Q(t) 

4 P(t), P(t-1), P(t-2), P(t-3) Q(t) 

5 P(t), P(t-1), P(t-2), P(t-3),Q(t-1) Q(t) 

6 P(t), P(t-1), P(t-2), P(t-3),Q(t-1), Q(t-2) Q(t) 

7 P(t), P(t-1), P(t-2), P(t-3),Q(t-1), Q(t-2), Q(t-3) Q(t) 

8 P(t), P(t-1), P(t-2), P(t-3),Q(t-1), Q(t-2), Q(t-3), Q(t-4) Q(t) 

 
 The models and algorithms used in this 

research were evaluated with respect to 

experimental datasets and the highest 
efficiency was selected for further 

simulation and analysis. This stage has 

eight main phases, which are described in 

Table (3). In simpler terms, these phases are 
the best input combinations that were 

selected based on the correlation 

coefficient. Also, for each model, all eight 
combinations were used at the training and 

testing stages. Researchers generally base 

their evaluation of models on either R2 or 
RMSE. The main objective of artificial 

intelligence-based systems is to reduce the 

estimated error rate; therefore, the criterion 

for superiority of models is RMSE in this 

research. It can generally be said that the 

addition of variables with high CC in 

determining the output of the model 
increases the point prediction power. Table 

(3) shows the selection of the optimal input 

combination based on RMSE. 

 As shown in Table (3), according to 
different structures of each model, the 

composition of the optimal input variable 

varies in the models. Also, for each model, 
RMSE values were calculated for both 

testing and training sections. In this section, 

the lowest amount of RMSE was selected in 
the testing section to comment on the 

accuracy of the models. As can be seen 

from Table (3), for all models in all four 

stations, the eighth model combination 
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(input combination (8)) had the best 

performance because this combination had 

the lowest RMSE. Also, given that the 
compositional structure or pattern number 8 

includes a number of more effective 

parameters or variables, the error is reduced 

by the same amount and, therefore, the 

combination number (8) will be preferable 
to other combinations. 
 

 
Table 3. Selection of the optimal input combination based on RMSE 

Chamanjir 

Model 
Evaluation 

criterion 
Phase 1 2 3 4 5 6 7 8 

MLR RMSE(m3/s) 
training 0.524 0.506 0.488 0.461 0.442 0.425 0.406 0.386 
testing 0.412 0.408 0.397 0.383 0.372 0.366 0.354 0.312 

ANN RMSE(m3/s) 
training 0.321 0.307 0.296 0.281 0.276 0.262 0.249 0.234 

testing 0.252 0.244 0.237 0.225 0.217 0.208 0.198 0.188 

SVR RMSE(m3/s) 
training 0.236 0.228 0.217 0.208 0.196 0.184 0.172 0.168 

testing 0.188 0.172 0.164 0.155 0.142 0.131 0.126 0.115 

WSVR RMSE(m3/s) 
training 0.161 0.152 0.146 0.133 0.121 0.111 0.101 0.092 

testing 0.085 0.074 0.066 0.058 0.047 0.035 0.028 0.016 

 
Kashkan 

Model 
Evaluation 
criterion 

Phase 1 2 3 4 5 6 7 8 

MLR RMSE(m3/s) 
training 0.476 0.462 0.451 0.446 0.432 0.418 0.397 0.372 

testing 0.354 0.344 0.337 0.324 0.316 0.308 0.296 0.284 

ANN RMSE(m3/s) 
training 0.347 0.335 0.326 0.314 0.306 0.291 0.284 0.276 

testing 0.268 0.254 0.242 0.236 0.222 0.214 0.204 0.187 

SVR RMSE(m3/s) 
training 0.242 0.236 0.224 0.218 0.207 0.198 0.186 0.175 

testing 0.179 0.168 0.155 0.142 0.135 0.127 0.116 0.108 

WSVR RMSE(m3/s) 
training 0.168 0.152 0.145 0.131 0.123 0.115 0.106 0.096 

testing 0.081 0.075 0.068 0.054 0.048 0.037 0.029 0.018 

 
Polzal 

Model 
Evaluation 

criterion 
Phase 1 2 3 4 5 6 7 8 

MLR RMSE(m3/s) 
training 0.482 0.476 0.462 0.448 0.437 0.422 0.408 0.386 

testing 0.375 0.365 0.356 0.342 0.336 0.322 0.309 0.294 

ANN RMSE(m3/s) 
training 0.356 0.345 0.334 0.327 0.314 0.307 0.291 0.288 

testing 0.276 0.261 0.255 0.242 0.236 0.225 0.211 0.198 

SVR RMSE(m3/s) 
training 0.254 0.246 0.232 0.225 0.214 0.206 0.192 0.186 

testing 0.188 0.175 0.166 0.152 0.141 0.132 0.128 0.111 

WSVR RMSE(m3/s) 
training 0.174 0.162 0.155 0.141 0.132 0.124 0.115 0.101 

testing 0.097 0.086 0.075 0.064 0.058 0.043 0.033 0.025 

 

Jologir 

Model 
Evaluation 
criterion 

Phase 1 2 3 4 5 6 7 8 

MLR RMSE(m3/s) 
training 0.472 0.464 0.452 0.441 0.432 0.421 0.401 0.384 

testing 0.366 0.654 0.342 0.337 0.324 0.317 0.308 0.291 

ANN RMSE(m3/s) 
training 0.342 0.336 0.327 0.315 0.309 0.297 0.286 0.274 

testing 0.268 0.254 0.246 0.237 0.226 0.214 0.203 0.193 

SVR RMSE(m3/s) 
training 0.245 0.233 0.228 0.215 0.208 0.196 0.187 0.172 

testing 0.178 0.166 0.157 0.142 0.134 0.121 0.111 0.103 

WSVR RMSE(m3/s) 
training 0.168 0.152 0.143 0.131 0.125 0.114 0.106 0.096 

testing 0.086 0.075 0.064 0.055 0.042 0.037 0.025 0.014 
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Model performance evaluation 

 In this study, for the four stations and for 

all models studied (MLR, ANN, SVR, 
WSVR), scatter plots and graphs of time 

changes concerning the observational and 

computational data associated with the four 

stations were respectively given in Figure 4. 
The results demonstrated that for all the 

stations studied, the WSVR model had the 

highest accuracy and the lowest error. Also, 
upon comparing the WSVR model with the 

SVR model, it was found that the new 

optimizer model outperformed the SVR 

model with good accuracy. After selecting 
the best input combination for each model 

and plotting the scatter plots and graphs of 

time changes concerning the observational 
and computational data for the four stations, 

the performance statistics of the studied 

station models for the test data are shown in 
Table (4). Therefore, in summary, after 

selecting the best input combination for 

each model, predictive models for flow 

simulation were studied in four stations. 
The performance statistics of WSVR model 

in all the studied stations at the validation 

stage demonstrated that this hybrid model 
enjoyed the following evaluation criteria 

(PBAIS = 0.001, NSE = 0.977-0.983, MAE 

= 0.008-0.009, RMSE = 0.014-0.016, R2 = 
0.968- 0.973). Also, the BIAS value was 

positive for all stations, meaning that that 

the model was underestimated. 

 Figure 4 shows the time series variation 
diagram and the distribution of 

observational and computational values. 

This figure illustrates that WSVR and 

SVR models experienced less errors 

maximum and minimum estimations. In 
addition, SVR had favorable accuracy in 

estimation of median and minimum values, 

while the statistical model of MLR and 

ANN had poor performance. 
 Box diagrams were used for visual 

analysis and evaluation of the models used 

in the research.  The closer the predicted 
value to the observational value is in terms 

of correlation coefficient and standard 

deviation, the higher the predictability will 

be (Sigaroodi et al., 2014). The advantage 
of a box chart is that it can demonstrate 

how a model predicts maximum, median, 

and square values. 
 The diagram of the runoff precipitation 

process box in Figure 5 shows that the 

WSVR model is of suitable fit with the 
maximum observed runoff. Also, ANN and 

MLR have the least compatibility. The 

same result was observed upon predicting 

the minimum observed runoff. These two 
results show that although SVR is one of 

the smart and accurate models, it cannot 

predict maximum values well. However, 
when combined with hybrid algorithm such 

as W, SVR’s performance in predicting 

maximum values is greatly enhanced. The 
WSVR models predict the values seen in 

the third quarter better than the other 

models and the SVR model predicts the 

values in the first quarter better. 
 

 
Table 4. Performance evaluation of the studied models for Karkheh catchment stations 

Chamanjir 

Model 
Training testing 

2R RMSE MAE NSE PBIAS 2R RMSE MAE NSE PBIAS 

MLR 0.83 0.386 0.242 0.87 0.004 0.865 0.312 0.168 0.898 0.003 

ANN 0.871 0.234 0.125 0.908 0.003 0.91 0.188 0.144 0.922 0.003 

SVR 0.92 0.168 0.134 0.93 0.003 0.952 0.115 0.086 0.963 0.002 

WSVR 0.956 0.092 0.045 0.96 0.002 0.968 0.016 0.008 0.977 0.001 

 
Kashkan 

Model 
Training testing 

2R RMSE MAE NSE PBIAS 2R RMSE MAE NSE PBIAS 

MLR 0.842 0.372 0.16 0.887 0.004 0.882 0.284 0.142 0.908 0.003 

ANN 0.884 0.276 0.134 0.917 0.003 0.921 0.187 0.095 0.936 0.003 

SVR 0.927 0.175 0.086 0.938 0.003 0.957 0.108 0.057 0.968 0.002 
WSVR 0.96 0.096 0.041 0.964 0.002 0.974 0.018 0.007 0.984 0.001 
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Polzal 

Model 
Training testing 

2R RMSE MAE NSE PBIAS 2R RMSE MAE NSE PBIAS 

MLR 0.836 0.386 0.163 0.886 0.004 0.877 0.294 0.143 0.901 0.003 

ANN 0.872 0.288 0.144 0.914 0.003 0.918 0.198 0.098 0.928 0.003 

SVR 0.923 0.186 0.095 0.936 0.003 0.955 0.111 0.061 0.966 0.002 

WSVR 0.955 0.101 0.052 0.961 0.002 0.972 0.025 0.012 0.981 0.001 

 
Jologir 

Model 
Training testing 

2R RMSE MAE NSE PBIAS 2R RMSE MAE NSE PBIAS 

MLR 0.84 0.384 0.161 0.887 0.004 0.88 0.291 0.142 0.905 0.003 

ANN 0.88 0.274 0.138 0.915 0.003 0.92 0.193 0.096 0.93 0.003 

SVR 0.925 0.172 0.088 0.937 0.003 0.956 0.103 0.058 0.967 0.002 
WSVR 0.957 0.096 0.045 0.963 0.002 0.973 0.014 0.009 0.983 0.001 

 

 
a) Chamanjir 
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b) Kashkan 

 

 

 
c) Polzal 
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d) Joligir 

 
Figure 4. Scatter diagram and time changes for observational and computational data for the four 

hydrometric stations under study a) Chamanjir b) Kashkan c) Polzal d) Jologir 
 

 According to Figure 5, at Chamanjir 

station, the SVR models in the first quarter 

corresponded well to the observational 
values, and the ANN and WSVR models 

corresponded to the values in the third 

quarter, while in the middle values of all 

models except, the MLR model worked 
well. 

 At Kashkan station, in the first quarter, 

WSVR model corresponded well to the 
observational values; SVRs functioned 

properly, while MLR model performed 

poorly in the case of the mentioned station. 

At Polzal station, in the first quarter, the 

WSVR model corresponded well to the 

observational values; however, in the third 
quarter, only the WSVR and SVR models 

performed well, while the MLR model 

performed poorly in the case of this station. 

 At Jologir station, in the first quarter, the 
results obtained by WSVR models were in 

good agreement with the observational 

values; however, in the third quarter, only 
the WSVR, SVR, and ANN models 

performed well. while the MLR model 

performed poorly in this station. 
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Figure 5. Box plot for the measured and predicted values 

 
Conclusion 

In general, the models developed for all the 

studied hydrometric stations achieved 
satisfactory prediction results. However, the 

comparison of model performance across 

the four stations in the Karkheh catchment 
revealed that the models for the Kashkan 

station outperformed those at the other 

stations. This comparative advantage is 

attributed to less skewed data, accurate 
measurement of observational parameters, 

operator precision, and high data quality. 

Additionally, the results indicated that the 
more effective the dependent variables 

were, the better the network performance. 

Furthermore, increasing the input to the 
network corresponded with improved 

efficiency and accuracy of the model. Also, 

according to the evaluation criteria, it was 

concluded that all the six models could 
estimate the runoff precipitation process 

with relatively high accuracy. Meanwhile, 

WSVR model exhibited greater accuracy 
and less error than MLR, ANN and SVR 

models. 

 Also, according to the evaluation 
criteria, it was concluded that all the six 

models could estimate the runoff 

precipitation process with a relatively high 

accuracy. Meanwhile, WSVR model had 
exhibited great accuracy and less error than 

MLR, ANN and SVR models. 

 Overall, the results of this study point to 
the superiority of the Wavelet model to 

other algorithms (based on correlation and 

RMSE criteria). This model provided the 

best possible response in the case of all the 
studied stations and had the best accuracy 

and the highest predictive power. This 

superiority is rooted in the powerful internal 
structure of this algorithm and the use of 

primary and secondary parameters, cost 

reduction function, and time saving in 
achieving an optimal solution and a more 

effective convergence, which has made the 

weights the most optimal convergence 

value.  
 Also, due to the powerful structure of 

the Wavelet algorithm, it is possible to 

ensure convergence to the optimal answer 
and local minima.  The performance of 

these secondary parameters along with 

other factors reduces the search amplitude, 
resulting in a better and faster convergence, 
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because the more limited the search 

amplitude is, the faster and more accurate 

the search and convergence will be. 
Overall, this study shows that the use of 

WSVR model can be effective in the runoff 

process. Also, this model can be useful in 

facilitating the development and 
implementation of surface water 

management strategies. This attempt will be 

quite fruitful in management decisions in 
order to increase the volume and quantity of 

surface water resources. 
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