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ABSTRACT 
  
The excessive use of agricultural pesticides and inputs has caused severe environmental damage to 
agricultural ecosystems. By applying digital agriculture and variable rate application systems, various 
sections of a farm can be managed with varying levels of pesticides and inputs, which is beneficial both in 
terms of production costs and environmental issues. In this study, a weed and saffron plant detection 
model was designed and evaluated to develop a selective weed control system in saffron fields. The 
proposed weed detection model is based on the YOLO v5 object detection model. Several CBS and C3 
modules in the YOLO v5s model were replaced with Ghost Bottleneck and C3Ghost modules, respectively. 
This was done to reduce the number of model parameters and make the network lighter, which increases 
the speed of image processing during model training and inference. Furthermore, to improve the 
detection accuracy of the proposed model, a coordinate attention (CoordAtt) layer was used. The results 
showed that the number of parameters in the proposed model was reduced by 47% compared to the 
corresponding model in terms of network width and depth coefficients in YOLO v5 versions. Meanwhile, 
among the six trained models, the modified YOLO v5s model demonstrated the best performance, 
achieving accuracy and recall values equal to 81% and 67%, respectively. The detection accuracy of the 
proposed model was 3.93% higher than that of the best-performing YOLO v5 algorithm. Due to the 
lightweight nature of the proposed algorithm, it can be used for real-time weed detection in agricultural 
fields to develop selective control systems. 
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Abbreviation Description 
BatchNorm Batch Normalization layer 

C3 
A CSP bottleneck that includes 3 convolutional 
layers 

C3Ghost 
A convolutional block composed from the 
integration of Ghost modules into the C3 
structure 

CBS Convolution-BatchNorm-SiLU 
Conv Convolution layer 
CoordAtt Coordinate Attention 
CSP Cross Stage Partial layer 
FN False Negative 
FP False Positive 
mAP mean Average Precision 

mAP50 
mean Average Precision at an Intersection over 
Union (IoU) threshold of 0.50 

mAP50-95 
mean Average Precision averaged across 
Intersection over Union (IoU) thresholds from 
0.50 to 0.95 

SiLU Sigmoid-Weighted Linear Unit 
SPP Spatial Pyramid Pooling 
SPPF Spatial Pyramid Pooling - Fast 
TN True Negative 
TP True Positive 
VRA Variable Rate Application 
VRAM Video RAM 
YOLO You Only Look Once 
YOLO v5 5th version of the YOLO model 
YOLO v5l Large-scale of the YOLO v5 model 
YOLO v5m Medium-scale of the YOLO v5 model 
YOLO v5n Nano-scale of the YOLO v5 model 
YOLO v5s Small-scale of the YOLO v5 model 
YOLO v5x Extra Large-scale of the YOLO v5 model 

 

1. Introduction 
 

The growing global population and the pressing need to 
ensure access to healthy food for all, combined with limited water 
resources and arable land, require effective strategies to enhance 
crop yield and quality per unit area. However, the indiscriminate 
use of agricultural pesticides and inputs has caused significant 
environmental harm to agricultural ecosystems. These challenges, 
along with water scarcity and the need to conserve energy for 
sustainable development, highlight the importance of adopting 
innovative approaches and advanced technologies in designing 
agricultural tools and machinery (Admasu et al., 2024). Among the 
most promising advancements in agriculture are artificial 
intelligence and robotics, particularly in the field of digital 
farming. Digital farming, including variable rate application (VRA) 
systems, enables precise management of different farm sections 
by varying pesticide or input levels, leading to reduced production 
costs and a lower environmental footprint (Zhou et al., 2023). 

Saffron (Crocus sativus L.) is a perennial herbaceous plant 
characterized by its bulb, leaves, petals, stigma, and stamens. Its 
primary product is the red stigma, which is dried during 
processing to produce saffron. With a history spanning over 2,500 
years as a medicinal plant, saffron was recognized in the European 
Pharmacopoeia from the 16th to the 20th centuries (José Bagur et 
al., 2017). It contains more than 300 volatile and non-volatile 
compounds, including safranal, picrocrocin, crocin, monoterpene 
glycosides, aldehydes, and various carotenoids, all of which 
contribute to its medicinal properties. Known as the world’s most 
expensive spice and often referred to as “red gold” (Fernández, 
2004), saffron is cultivated in regions of the Mediterranean, 
Europe, and Asia. Among these, Iran stands out as the largest 

 

Biosystems Engineering and Renewable Energies 
 

Journal homepage: https://bere.gau.ac.ir       
     ISAMEM  

https://bere.gau.ac.ir/


  Biosystems Engineering and Renewable Energies Journal 2025, 1 (1): 44-50 

                                                                                                                                               

45 
 

producer, with the most extensive saffron cultivation area globally 
(Shahnoushi et al., 2020). According to the latest statistics from 
Iran’s Ministry of Agriculture (Ministry of Agriculture-Jihad, 
2020), the country has over 120,000 hectares of saffron 
cultivation, producing 439,000 kg in 2020. 

The high cost of saffron is primarily due to its low yield per 
hectare and the labor-intensive nature of its cultivation, 
maintenance, harvesting, and processing (Kumar et al., 2008). 
Traditional agricultural practices, combined with the lack of 
appropriate machinery for saffron production, mean that a 
significant portion of the work is done manually. As a result, some 
producers neglect essential tasks such as pest, disease, and weed 
control, despite their critical impact on crop yield and quality. In 
recent decades, the global demand for saffron has risen 
significantly due to its nutritional and medicinal value, reflecting 
growing consumer interest worldwide (Abdullaev and Frenkel, 
1999). 

Weeds remain a persistent challenge for farmers, competing 
with crops for water, soil nutrients, sunlight, and space, while also 
providing habitats for pests and diseases. This competition 
weakens plants and reduces crop yields (Cheng and Matson, 2015; 
Singh et al., 2016). To combat this, farmers employ various weed 
control methods, including agricultural practices, plant 
quarantine, hand weeding, biological control, and chemical control 
(Woyessa, 2022). In saffron cultivation, weed control is 
particularly critical, as weeds cause more damage than other pests 
or diseases. However, traditional weed management methods are 
labor-intensive and expensive. Chemical control, involving 
indiscriminate herbicide spraying across fields, further increases 
costs and poses environmental risks. Excessive herbicide use in 
agriculture contributes to pollution, as highlighted by the 
European Food Safety Authority, which found that 98.9% of food 
products contain agricultural chemical residues, with 1.5% 
exceeding safe limits (Rodrigo et al., 2014). Overuse of herbicides 
has also led to the development of herbicide-resistant weeds, a 
growing threat to crop production worldwide (Jeanmart et al., 
2016). In response, many European countries have begun 
restricting herbicide use in agriculture (Hamuda et al., 2016). To 
address these challenges, researchers have developed alternative 
weed control methods in recent years. For instance, a study 
demonstrated the effectiveness of spot spraying to target weeds in 
corn fields, reducing the reliance on widespread herbicide 
application (Guerrero et al., 2017). 

Our objective in this research is to present a solution for 
implementing selective weed control in saffron fields. This 
solution involves real-time detection of weeds in the field and 
subsequent targeted application of herbicides. To achieve this, a 
lightweight object detection model based on YOLO v5 is proposed 
for weed detection. By replacing certain components of the YOLO 
v5 architecture with lighter modules, we have developed a model 
that can be used in real-time applications while maintaining high 
accuracy. Integrating this model with a variable-rate sprayer 
enables targeted herbicide application only in areas infested with 
weeds. 
 

2. Materials and Methods 
2.1. Image dataset  

Saffron plants were cultivated in rows, with approximately 25 
cm of spacing between rows and less than 25 cm between plants 
within a row. Weed control began during the early growth stages, 
known as the two-leaf or multi-leaf stage, as the saffron plant 
cannot effectively compete with weeds at this time. To train and 
evaluate the model developed in this work, images were collected 
during this critical growth stage. A total of 620 images were 
captured at various times of the day in a saffron field located in 
Azadshahr County, Golestan Province, Iran. The images were 
taken with a smartphone camera (Xiaomi Redmi Note 9S) held 
perpendicular to the field surface, relying on natural ambient light 
without artificial illumination. To account for different lighting 
conditions, images were taken in the morning, noon, and 

afternoon. The image content consists of saffron cultivation rows, 
potentially contaminated by various weed species, including 
broad-leaved and thin-leaved grasses (Figure 1). The original 
images had a resolution of 3000×3000 pixels. To optimize them 
for the YOLO v5 object detection model, the resolution was 
reduced to 640×640 pixels. Using the labelImg software, saffron 
plants and weeds within the images were annotated. In total, 6000 
objects were labeled, with approximately 68% identified as 
saffron plants and the rest as weeds. The annotation process was 
conducted by a skilled person, knowledgeable about the shapes 
and characteristics of saffron plants and weeds. A sample of the 
annotated images is shown in Figure 1. 

 
2.2. YOLO v5 architecture 

The YOLO algorithm is renowned for its speed in object 
detection. Initially introduced by Redmon (2016), YOLO has 
consistently demonstrated superior performance among single-
stage object detection algorithms. Since then, several versions of 
YOLO have been released, from YOLO v1 to YOLO v8, as well as 
YOLOR and YOLOX. These versions have been adapted by 
researchers to suit specific datasets and applications. Of these, 
YOLO v5 has seen the most modifications due to its simplicity and 
strong performance. Enhanced versions of YOLO v5 have been 
proposed for a wide range of applications, from medical to 
agricultural fields. In this study, we present a modified version of 
the YOLO v5n architecture tailored for weed detection in saffron 
fields, designed for real-time application. 

The YOLO algorithm architecture is typically divided into three 
components: the backbone, the neck, and the head. The backbone 
is responsible for extracting features from the input images. The 
neck then fuses these extracted features. Finally, the head 
performs the prediction operation, which is a type of regression. 
Figure 2 illustrates the architecture of the YOLO v5 algorithm. 

YOLO v5 is available in five different scales, each with varying 
network depth and width multipliers: YOLO v5n (nano), YOLO v5s 
(small), YOLO v5m (medium), YOLO v5l (large), and YOLO v5x 
(extra-large). As the scale increases from nano to extra-large; the 
model size, number of layers, and parameters also increase, 
typically improving performance in larger models but also slowing 
down training and inference speeds. The choice of the most 
suitable model depends on the specific application and available 
hardware. Table 1 outlines the configuration of each scale, 
including the depth and width multipliers. 

 

 
Figure 1. Sample annotated image using labelImg software (Green: Saffron 
plant, Purple: Weed) 
 
Table 1. Configuration of YOLO models with different scales 

x l m s n Model scale 
1.33 1.00 0.67 0.33 0.33 depth multiple 

1.25 1.00 0.75 0.5 0.25 width multiple 



Shamloo et al.  

 

46 
 

The architecture of YOLO v5 remains consistent across all the 
scales mentioned and follows the structure depicted in Figure 2. 
The backbone is mainly composed of CBS, C3, and SPPF modules, 
with the structure of these modules illustrated in Figure 3. The 
CBS module consists of three layers: a convolutional layer (Conv), 
a batch normalization layer (BatchNorm), and a SiLU activation 
layer. The C3 module divides the feature map from the base layer 

into two parts and then merges them using an intermediate-level 
hierarchy, which helps eliminate redundant computations caused 
by repetitive image gradient information. This enhances the 
model's trainability and reduces computational costs. The SPPF 
module is an upgraded version of the Spatial Pyramid Pooling 
(SPP) module, enabling it to convert feature maps of varying sizes 
into a fixed-size feature vector. 

 

 
Figure 2. Network architecture of of the YOLO v5 model 

 

 
Figure 3. The structure of the CBS, Bottleneck, C3, and SPPF modules 
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2.3. The architecture of the improved YOLO v5 
Deep convolutional neural networks typically consist of tens 

or even hundreds of layers, along with a large number of 
parameters. While increasing the number of layers and 
parameters can improve feature extraction—provided that issues, 
like gradient vanishing and exploding, are mitigated—there are 
practical limitations due to memory size and the computational 
power needed for model training and deployment. As a result, 
efforts are focused on developing object detection models that 
balance high detection accuracy with being computationally 
lightweight and easier to deploy. To address these challenges, the 
proposed improved YOLO v5 algorithm incorporates Ghost 
Bottleneck and C3Ghost modules, replacing the CBS and C3 
modules, respectively. This substitution results in a lighter YOLO 
v5 model by reducing the number of parameters and 
computational costs for both training and inference. Additionally, 
a coordinate attention mechanism module is introduced to 
enhance the network's feature extraction capabilities and improve 
overall model performance. This module is positioned in the 
backbone, just before the SPPF module (Figure 4). 

A Ghost BottleNeck is a skip connection block, similar to the 
basic residual block in ResNet in which several convolutional 
layers and shortcuts are integrated, but stacks Ghost 
Modules instead (two stacked Ghost modules). It was proposed as 
part of the GhostNet CNN architecture. A Ghost Bottleneck 
typically consists of two stacked Ghost Modules. The first module 
expands the number of channels, determined by the expansion 
ratio. The second module reduces the number of channels to 
match the shortcut connection. This shortcut connects the input 
directly to the output of both Ghost Modules. Batch normalization 
(BN) and ReLU activation are applied after each layer within the 
bottleneck (Han et al., 2020). 

The CoordAtt mechanism is an innovative attention module 
that effectively captures both channel relationships and positional 
information within feature maps. Unlike previous methods like 
squeeze-and-excitation (SE) that primarily focused on channel 
dependencies, CoordAtt explicitly encodes spatial information by 
separately pooling features along the horizontal and vertical 
dimensions. This generates two 1D feature vectors per channel, 
capturing the distribution of features across these spatial 
directions. These vectors are then concatenated and processed by 
a 1x1 convolutional layer to generate attention weights for each 
channel, considering both horizontal and vertical positional 
information. Finally, these attention weights are reshaped and 
broadcast to refine the original feature map by emphasizing 
regions deemed important based on both channel and spatial cues. 
This unique approach allows CoordAtt to selectively focus on 
relevant regions within the input data, significantly improving the 
performance of deep learning models in various computer vision 
tasks while maintaining computational efficiency (Hou et al., 
2021). 
 

2.4. Training of the improved YOLO v5 
The collected image dataset was split into training and testing 

sets in an 80:20 ratio, resulting in 496 images for training each 
model and 124 images for evaluating the models. The proposed 
model was implemented using the PyTorch framework. Both the 
proposed model and the YOLO v5 models with different scales 
were trained on the training images using a high-performance 
computer equipped with an NVIDIA® GeForce RTX™ 4080 
graphics card (16 GB of VRAM), an Intel® Core™ i5-13600KF 
processor, 32 GB of RAM, and the Windows 11 operating system. 
The batch size was set to 16, and the number of training epochs 
was set to 200. All other hyperparameters were left at their default 
values. 

 
2.5. Performance evaluation criteria 

The models were evaluated based on the metrics of Precision 
(Eq. 1), Recall (Eq. 2), average precision (AP) (Eq. 3), and mean AP 
(mAP) (Eq. 4) 

 

(1) Precicion =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) AP = ∫ 𝑃𝑑𝑅
1

0

 

(4) mAP ==
1

𝑛
∑ APi

𝑛

𝑖=0
 

 
where, TP is true positives, showing the number of objects 

correctly identified, FP is false positives, showing the number of 
objects that are not present in the image but are incorrectly 
identified as objects, FN is false negatives, determining the 
number of objects that are present in the image but are incorrectly 
not identified, and finally, AP is the area under the precision-recall 
curve. 

 
3. Results and Discussion 
 

This study presents an object detection model based on 
improved YOLO v5s for identifying weeds and saffron plants in a 
saffron field. To reduce the number of parameters in the original 
YOLO v5s model, Ghost Bottleneck and C3Ghost modules were 
integrated. Additionally, a CoordAtt module was added to the 
model architecture. To evaluate the performance of the proposed 
model and compare it with existing YOLO v5 variants, the model, 
along with five other YOLO v5 models (YOLO v5n, YOLO v5s, YOLO 
v5m, YOLO v5l, and YOLO v5x), was trained on images captured 
from a saffron field.   

 

 
Figure 4. Network structure of the Ghost Bottleneck, C3Ghost, and CoordAtt modules used in the improved YOLO v5 model 
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The evaluation results, including precision, recall, mean 

Average Precision at 50% Intersection over Union (mAP50), and 
mean Average Precision across 50% to 95% Intersection over 
Union thresholds (mAP50-95), are summarized in Table 2. The 
table also includes details on the number of layers and parameters 
for each trained model. As shown in Table 2, YOLO v5n and YOLO 
v5s have fewer network layers compared to the other models. 
Since both share the same width multiples, their layer count is 
identical. Although the number of layers in the improved model 
has increased due to the incorporation of different modules in its 
architecture, it has fewer parameters than its counterpart with the 
same width and depth multiples, the YOLO v5s model. Notably, the 
proposed model reduces the number of parameters by 47%. This 
reduction translates to a smaller model size and faster 
performance when evaluating test images. The proposed model 
demonstrated superior accuracy and recall compared to the other 
trained models. Specifically, it achieved a 3.93% improvement in 
accuracy and a 1.01% improvement in recall over the YOLO v5m 
model, which had the highest performance among the YOLO v5 
variants. The performance improvement is even more 
pronounced when compared to the YOLO v5 model with the same 
width and depth multiplies.  

A precision-recall curve illustrates the trade-off between 
precision (the proportion of true positives among all predicted 
positives) and recall (the proportion of true positives identified 
out of all actual positives) at various classification thresholds. 
Figure 5 presents the precision-recall curves for saffron plant and 
weed detection. Notably, the curve for saffron plant detection 
consistently lies above the curve for weed detection across a range 
of recall levels. This observation indicates that the proposed 
model exhibits higher precision in identifying saffron plants 
compared to weeds at equivalent recall values. In essence, the 
model demonstrates a stronger ability to correctly classify saffron 
plants as saffron plants while maintaining a similar level of 

sensitivity in detecting both classes. This disparity in performance 
can likely be attributed to the class imbalance observed in the 
training dataset, where saffron plant samples may have been more 
abundant than weed samples. A larger number of training 
examples for saffron plants would naturally provide the model 
with more robust learning signals and better generalization 
capabilities for this class. 

Regarding the mAP50 and mAP50-95 metrics, the YOLO v5n 
and YOLO v5s models achieved the best performance, 
respectively. The highest mAP50 value recorded was 66.9%, 
which is relatively low. Factors such as the quantity and quality of 
training images, the complexity of the detection task, and the 
models' capabilities likely contributed to this result. For additional 
insights, Figure 6 illustrates the average precision values of the 
different models for detecting saffron plants and weeds. As shown, 
all models exhibited higher accuracy in detecting saffron plants 
compared to weeds. Specifically, saffron plants were identified 
with an average precision ranging from 82.7% to 84.9% across the 
models, whereas weeds were detected with average precision 
values between 43.7% and 50.1%. 

To further assess the proposed model's performance, the 
confusion matrix for its detection accuracy across the saffron 
plant, weed, and background classes is presented in Figure 7. The 
matrix reveals that the algorithm identified saffron plants in the 
test images with a high accuracy of 93%. However, its 
performance in detecting weeds was less effective, as it correctly 
identified only 59% of the weeds and distinguished them from the 
background. This limitation may be attributed to the small size of 
many weeds and their wide size variation in the field. Notably, the 
algorithm misclassified weeds as saffron plants in just 1% of cases, 
and no saffron plants were incorrectly identified as weeds—a 
significant strength of the model. The main error occurred in 
misclassifying background areas as either saffron plants or weeds. 

 

 
Table 2. Comparison of the performance of different models on saffron field images 

Model No. of layers No. of parameters Precision (P) Recall (R) mAP50 mAP50-95 
YOLO v5n 157 1,761,871 0.678 0.655 0.669 0.283 
YOLO v5s 157 7,015,519 0.689 0.655 0.667 0.284 
YOLO v5m 291 20,875,359 0.787 0.667 0.655 0.282 
YOLO v5l 368 46,143,679 0.775 0.654 0.651 0.271 
YOLO v5x 322 86,180,143 0.679 0.619 0.649 0.276 
Proposed 479 3,694,967 0.818 0.674 0.651 0.269 

 

 
Figure 5. Precision-Recall curve of the improved YOLOv5s model 
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Figure 6. Comparison of mAP50 metric values for different models in detecting weeds and saffron plants 
 

 
Figure 7. Confusion matrix of the improved YOLOv5s model 

 
The superior performance of the proposed YOLO model 

compared to the baseline YOLO v5 model can be attributed to two 
key architectural enhancements. The integration of Ghost 
Bottleneck and C3Ghost modules significantly reduces the number 
of model parameters, leading to a more computationally efficient 
network. This translates to faster training and inference times, 
crucial for real-time weed detection in dynamic agricultural 
environments. Sonawane and Patil (2024) discuss modifications 
to the YOLO v5 model, focusing on performance metrics such as 
precision and recall in weed detection. They highlight the 
advantages of using advanced architectures for improving 
detection accuracy and efficiency, which aligns with the 
architectural enhancements mentioned in this research, such as 
reducing parameters and enhancing computational efficiency. 
Narayana and Ramana (2023) show that enhancements in the 
YOLO v7 architecture can contribute to improved performance 
metrics (Narayana and Ramana, 2023). 

The incorporation of the CoordAtt layer enhances the model's 
ability to capture spatial information within the feature maps. By 
considering both channel relationships and positional 
information, the CoordAtt layer guides the model to focus on 
relevant regions within the image, resulting in improved detection 
accuracy and reduced false positives. These combined 
architectural modifications contribute to the enhanced 
performance of the proposed model, making it a more suitable and 
efficient solution for real-time weed detection in saffron fields. 
Peng et al. (2023) introduced an improved version of the YOLO v7 
model that incorporates attention mechanisms to enhance feature 
extraction for weed detection. Their findings demonstrate 
significant improvements in mAP metric yield via utilizing the 
CoordAtt layer in the YOLO architecture (Peng et al., 2023). In 
another research, modifications in YOLO v8 architecture resulted 
in improved performance compared to the baseline model, 
enabling its application for real-time weed detection (Kumar and 
Misra, 2024). 

Besides the strengths of the YOLO models and mainly the 
modified model proposed in this research, these models suffer 

from several limitations. Firstly, their performance is heavily 
reliant on the quality and quantity of the training data. Limited or 
biased datasets can hinder generalization and lead to inaccurate 
detections in real-world scenarios. Secondly, environmental 
variations, such as changing weather conditions, lighting, and crop 
growth stages, can significantly impact the model's accuracy and 
robustness. Furthermore, the model might struggle to accurately 
detect small weeds or those obscured by crops, potentially leading 
to missed detections or false positives. Finally, the model's 
robustness to occlusion, where weeds are partially hidden by 
other plants or debris, remains a significant challenge. In this 
regard, developing methods for the model to continuously learn 
and adapt to changing environmental conditions and different 
weed species (Adhinata and Sumiharto, 2024; Alif and Hussain, 
2024).  
 

4. Conclusions 
 

Advancements in image processing through deep neural 
networks and the development of object detection algorithms have 
recently introduced new tools to the agricultural industry. At the 
heart of these tools are artificial intelligence algorithms that should 
balance high accuracy with fast detection and decision-making 
capabilities. The effectiveness and reliability of such algorithms are 
assessed based on these two parameters. In this study, a weed 
detection model for saffron fields was developed using the YOLO v5 
object detection algorithm. Modifications to the original algorithm 
focused on reducing the number of parameters and enhancing 
processing speed compared to its counterpart with the same 
network width and depth multipliers. Simultaneously, the model's 
accuracy was improved over existing models. Based on the 
evaluation results, the proposed model outperformed others in 
terms of both parameter efficiency and detection accuracy, making 
it a candidate for integration into robotic systems for selective weed 
control. 
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