
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,489 |
تعداد مشاهده مقاله | 8,608,323 |
تعداد دریافت فایل اصل مقاله | 8,199,957 |
استخراج ترکیبات زیستفعال از محصولات جانبی حاصل از فرآوری آبزیان | ||
مجله بهره برداری و پرورش آبزیان | ||
مقاله 6، دوره 6، شماره 1، فروردین 1396، صفحه 61-73 اصل مقاله (255.25 K) | ||
نوع مقاله: مقاله کامل علمی - پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/japu.2017.12557.1335 | ||
نویسندگان | ||
زهرا نحوی* 1؛ سید فخرالدین حسینی1؛ مژگان زندی2 | ||
1تربیت مدرس | ||
2پژوهشگاه پلیمر و پتروشیمی ایران | ||
چکیده | ||
چکیده موجودات دریایی به عنوان یک منبع با ارزش از مواد غذایی و ترکیبات کارکردی شناخته میشوند. از طرفی سالانه مقادیر زیادی از مواد زائد کم ارزش، درکارخانجات فرآوری غذاهای دریایی تولید میشوند. در نتیجه، محققان تعدادی از ترکیبات زیست فعال از جمله پپتیدهای زیست فعال، کلاژن و ژلاتین، الیگوساکاریدها، اسیدهای چرب، آنزیم ها، کلسیم، مواد محلول در آب، و پلیمرهای زیستی را از مواد دور ریختنی و باقی ماندههای مواد خام شناسایی کردند. پپتیدهای زیستفعال مشتق شده از ضایعات ماهی می-تواند به عنوان ضدفشارخون، ضداکسیدان، ضدانعقادخون، و ترکیبات ضدمیکروبی در غذاهای کارکردی یا مواد غذایی و دارویی با توجه به پتانسیل درمانی آنها در درمان یا پیشگیری از بیماریها استفاده شوند. دراین راستا، در حال حاضرکلاژن و ژلاتین در زمینههای مختلف از جمله صنایع غذایی، آرایشی و بهداشتی، و زیست پزشکی مورد استفاده قرار میگیرد. همچنین کیتین، کیتوسان و مشتقاتشان دارای پلی ساکاریدهای بیولوژیکی فعال میباشند. از این رو، ضایعات غذاهای دریایی، منابع طبیعی ارزشمندی هستند که محدوده وسیعی از ویژگیهای کارکردی را نشان میدهند و از این رو مواد بالقوهای برای صنایع پزشکی، زیستی و غذا- دارو میباشند. | ||
کلیدواژهها | ||
ترکیبات زیستفعال؛ ضایعات آبزیان؛ غذادارو؛ محصولات با ارزش افزوده؛ محصولات جانبی | ||
مراجع | ||
1.Augustin, M.A., and Sanguansri, L. 2015. Challenges and solutions to incorporation of nutraceuticals in foods. Annual Review of Food Science and Technology, 6: 463-477. 2.Aronove, D., Karlov, A., and Rosenman, G. 2007. Hydroxyapatite nanoceramics: Basic physical properties and biointerface modification. Journal of the European Ceramic Society. 27(13): 4181–4186. 3.Aytekin, A.O., Morimura, S., and Kida, K. 2010. Synthesis of chitosan–caffeic acid derivatives and evaluation of their antioxidant activities. Journal of bioscience and bioengineering. 111(2): 212–216. 4.Barakat, A.M.N., Khalil, K.A., Sheikh, F.A., Omran, A.M., Gaihre, B., Khil, S.M., and Kim, H.Y. 2008. Physicochemical characterization of hydroxyapatite extracted from bones by three different methods: Extraction of biological desirable HAP. Materials Science and Engineering: C, 28(8): 1381–1387. 5.Batista, I., Ramos, C., Coutinho, J., Bandarra, NM., and Nunes, N.L. 2009. Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) byproducts and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45(1): 18-24. 6.Cheung, I.W.Y., and Li-Chan, E.C.Y. 2010. Angiotensin-I-converting enzyme inhibitory activity and bitterness of enzymatically-produced hydrolysates of shrimp (Pandalopsis dispar) processing byproducts investigated by Taguchi design. Food Chemistry. 122(4): 1003–1012. 7.Cho, S.M., Gu, Y.S., and Kim, S.B. 2005. Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloids, 19(2): 221-229. 8.Dong, S., Sun, J., Li, Y., Li, J., Cui, W., and Li, B. 2014. Electrospun Nanofibrous Scaffolds Of Poly (L-Lactic Acid)–Dicalcium Silicate Composite Via Ultrasonic-Aging Technique For Bone Regeneration. Materials Science And Engineering: C, 35: 426–433. 9.Fang, Z., Bhandari, B. 2010. Encapsulation of Polyphenols-a Rview, Trends in Food Science and Technology, 21(10): 510-523. 10.Gómez-Guillén, M.C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., and Montero, P. 2009. Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science and Technology, 20(1): 3-16. 11.Gould, G.W. 1996. Industry Perspectives on the Use of Natural Antimicrobials and Inhibitors for Food Applications, Journal of Food Protection, 82-86. 12.Hirata, H., Saeki, H., Nonaka, M., Kawasaki, K., Ooizumi, T., and Motoe, K. 1993. Recovery of fish oil from the manufacturing process of highly nutritional fish meat for foodstuffs from sardine. Nippon Suisan Gakkaishi 59: 111–116. 13.Hosseini, S.F., Zandi, M., Rezaei, M., and Farahmandghavi, F. 2013. Two-Step Method for Encapsulation of Oregano Essential Oil in Chitosan Nanoparticles: Preparation, Characterization and In Vitro Release Study, Carbohydrate Polymers, 95(1): 50-56. 14.Huang, R., Mendis, E., Rajapakse, N., and Kim, S.K. 2006. Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life sciences, 78(20): 2399-2408. 15.Jayakumar, R., Prabaharan, M., Kumar, P.S., Nair, S.V., and Tamura, H. 2011. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology advances, 29(3): 322-337. 16.Jayathilakan, K., Sultana, K., Radhakrishna, K., and Bawa, A.S. 2012. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review, Journal of Food Science and technology, 49(3): 278-293. 17.Je, J.Y., Qian, Z.J., Byun, H.G., and Kim, S.K. 2007. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis, Process Biochemistry, 42(5): 840-845. 18.Jeon, Y.J., and Kim, S.K. 2000. Continuous production of chitooligosaccharides using a dual reactor system. Process Biochemistry. 35(6): 623–632. 19.Jiang, H., Tong, T., Sun, J., Xu, Y., Zhao, Z., and Liao, D. 2014. Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate, Food Chemistry, 154: 158-163. 20.Jo, H.Y., Jung, W.K., and Kim, S.K. 2008. Purification and Characterization of a Novel Anticoagulant Peptide from Marine Echiuroid Worm, Urechis Unicinctus, Process Biochemistry, 43(2): 179-184. 21.Jung, W.K., Park, P.J., Byun, H.G., Moon, S.H., and Kim, S.K. 2005. Preparation of hoki (Johnius belengerii) bone oligophosphopeptide with a high affinity to calcium by carnivorous intestine crude proteinase. Food Chemistry. 91(2): 333–340. 22.Khiari, Z., Rico, D., Martin-Diana, A.B., and Barry-Ryan, C. 2014. Structure elucidation of ACE-inhibitory and antithrombotic peptides isolated from mackerel skin gelatin hydrolysates, Journal of the science of food and agriculture, 94(8): 1663-1671. 23.Khora, Ss. 2013. Therapeutic Benefits Of Ω-3 Fatty Acids From Fish, International Journal Of Drug Development and Research, 5(2): 55-65. 24.Kim, G.H., Jeon, Y.J., Byun, H.G., Lee, Y.S., and Kim, S.K. 1998. Effect of calcium compounds from oyster shell bound fish skin gelatin peptide in calcium deficient rats, Korean Journal of Fisheries and Aquatic Sciences, 31: 149–159. 25.Kim, S.Y., Je, J.Y., and Kim, S.K. 2007. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. The Journal of Nutritional Biochemistry, 18(1): 31–38. 26.Ko, J.Y., Lee, J.H., Samarakoon, K., Kim, J.S., and Jeon, Y.J. 2013. Purification And Determination Of Two Novel Antioxidant Peptides From Flounder Fish (Paralichthys Olivaceus) Using Digestive Proteases, Food And Chemical Toxicology, 52: 113-120. 27.Komaiko, J., Sastrosubroto, A., McClements, D.J. 2016. Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids. Food Chemistry, 203: 331-339. 28.Lee, H.C., Singla, A., and Lee, Y. 2001. Biomedical applications of collagen. International Journal of Pharmaceutics. 221(1-2): 1–22. 29.Li, Z. 2014. Encapsulation of Bioactive Salmon Protein Hdrolysates Wth Chitosan-Coated Liposomes, Journal of Master of Science Thesis The university of Dalhousie, Halifax, Canada. 30.Lin, L., Lv, S., and Li, B. 2012. Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates, Food chemistry, 131(1): 225- 230. 31.Madrigal-Carballo, S., Lim, S., Rodriguez, G., Vila, A.O., Krueger, C.G., Gunasekaran, S., and Reed, J.D. 2010. Biopolymer Coating of Soybean Lecithin Liposomes Via Layer-ByLayer Self-Assembly as Novel Delivery System for Ellagic Acid, Journal of Functional Foods, 2(2): 99-106. 32.Menon, V., Venugopal, and Smita, Lele, S. 2015. Nutraceuticals and bioactive compounds from seafood processing waste. Springer Handbook of Marine Biotechnology. Springer Berlin Heidelberg, 1405-1425. 33.Moomand, K., and Lim, L.T. 2015. Effects of solvent and n-3 rich fish oil on physicochemical properties of electrospun zein fibres. Food Hydrocolloids, 46: 191-200. 34.Moskowitz, R.W. 2000. Role of collagen hydrolysate in bone and joint disease. Seminars in arthritis and rheumatism. 30(2): 87–99. 35.Mosquera, M., Giménez, B., da Silva, I.M., Boelter, J.F., Montero, P., Gómez-Guillén, M.C., and Brandelli, A. 2014. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen, Food chemistry, 156(2): 144-150. 36.Nakagawa, T., and Tagawa, T. 2000. Ultrastructural study of direct bone formation induced by BMPs-collagen complex implanted into an ectopic site, Oral Diseases, 6(3): 172–179. 37.Ngo, D.H., Ryu, B.M., and Kim, S.K. 2014. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radicalmediated oxidation, Food Chemistry, 143: 246-255. 38.Nikoo, M., Benjakul, S., Ehsani, A., Li, J., Wu, F., Yang, N., Xu, B., Jin, Z., and Xu, X., 2014. Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. Journal of Functional Foods, 7: 609-620. 39.Park, P.J., Je, J.Y., and Kim, S.K. 2003. Angiotensin I converting enzyme (ACE) inhibitory activity of hetero-chitooligosaccharides prepared from partially different deacetylated chitosans. Journal of Agricultural Food Chemistry. 51(17):4930–4934. 40.Raghavan, S., Kristinsson, H.G., 2009. ACE-Inhibitory Activity of Tilapia Protein Hydrolysates, Food chemistry, 117(4): 582-588. 41.Rajapakse, N., Jung, W.K., Mendis, E., Moon, S.H., and Kim, S.K. 2005. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation, Life Sciences, 76(22): 2607–2619. 42.Ramos, M., Jiménez, A., Peltzer, M., Garrigós, M.C. 2014. Development of novel nanobiocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food chemistry, 162: 149-155. 43.Sahena, F., Zaidul, I.S.M., Jinap, S., Jahurul, M.H.A., Khatib, A., and Norulaini, N.A.N., 2010. Extraction of fish oil from the skin of Indian mackerel using supercritical fluids. Journal of Food Engineering. 99(1): 63–69. 44.Salampess, J., Phillips, M., Seneweera, S., and Kailasapathy, K. 2010. Release of Antimicrobial Peptides through Bromelain Hydrolysis of Leatherjacket (Meuchenia sp) Insoluble Proteins, Food Chemistry, 120(2): 556-560. 45.Schrieber, R., and Gareis, H. 2007. Gelatine Handbook. Wiley-VCHGmbH and Co., Weinhem. Simopoulos, A.P. 1999. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 46.Shahidi, F., Han, X.Q., and Synowiecki, J. 1995. Production and Characteristics of Protein Hydrolysates from capelin (Mallotus villosus), Food chemistry, 53(3): 285-293. 47.Simpson, B.K., Nayeri, G., Yaylayan, V., and Ashi, I.N.A. 1998. Enzymatic hydrolysis of shrimp meat, Food Chemistry, 61(1-2): 131–138. 48.Sun, J., He, H., and Xie, B.J. 2004. Novel Antioxidant Peptides from Fermented Mushroom Ganoderma lucidum, Journal of Agricultural and Food Chemistry, 52(21): 6646-6652. 49.Supavititpatana, P., Wirjantoro, T.I., Apichartsrangkoon, A., and Raviyan P. 2008. Addition of gelatin enhanced gelation of corn–milk yogurt, Food Chemistry, 106(1): 211–216. 50.Tajik, H., Moradi, M., Razavi Rohani, S.M., Erfani, A.M., and Shokouhi Sabet Jalali, F., 2008. Preparation of chitosan from brine shrimp (Artemia uremiana) cyst shells and effects of different chemical processing sequences on the physicochemical and functional properties of the product. Molecules, 13: 1263-1274. 51.Thiansilakul, Y., Benjakul, S., and Shahidi, F. 2007. Antioxidative Activity of Protein Hydrolysate from Round Scad Muscle Using Alcalase and Flavourzyme, Journal of Food Biochemistry, 31(2): 266-287. 52.Vannuccini, S. 2004. Overview of Fish Production, Utilization, Consumption and Trade. FAO, Rome. 70, 560S–569S. 53.Wassawa, J., Tang, J., and Gu, X. 2007. Utilization of fish processing by-products in the gelatin industry. Food Reviews International, 23(2): 159–174. 54.Wijesekara, Z.J., Qian, B., Ryu, D.H., and Ngo, S.K.Ki. 2011.Purification and identification of antihypertensive peptides from seaweed pipefish (Syngnathus schlegeli) muscle protein hydrolysate, Food Research International, 44(3): 703-707. 55.Yang, L., Chen, L., Zeng, R., Li, C., Qiao, R., Hu, L., and Li, Z. 2010. Synthesis, nanosizing and in vitro drug release of a novel anti-HIV polymeric prodrug: Chitosan-O-isopropyl- 50- O-d4T monophosphate conjugate. Bioorganic and Medicinal Chemistry. 18(1): 117–123. 56.You, L., Regenstein, J M., and Liu, R H. 2010. Optimization of hydrolysis conditions for the production of antioxidant peptides from fish gelatin using response surface methodology, Journal of food science, 75(6): 582-587. 57.Zamani, A., Madani, R., Rezaei, M., Benjakul, S. 2016. Antioxidative Activitiy of Protein Hydrolysate from the Muscle of Common Kilka (Clupeonella cultriventris caspia) Prepared Using the Purified Trypsin from Common Kilka Intestine. Journal of Aquatic Food Product Technology, 1-15. | ||
آمار تعداد مشاهده مقاله: 2,054 تعداد دریافت فایل اصل مقاله: 1,525 |