
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,650,689 |
تعداد دریافت فایل اصل مقاله | 8,256,722 |
کاربرد روشهای شبکهی بیزین و حداقل مربعات ماشین بردار پشتیبان در پیش بینی تراز سطح آب دریاچه ارومیه | ||
مجله پژوهشهای حفاظت آب و خاک | ||
مقاله 12، دوره 25، شماره 3، مرداد و شهریور 1397، صفحه 193-207 اصل مقاله (1.12 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2018.14361.2910 | ||
نویسندگان | ||
سجاد کریم زادگان1؛ جواد بهمنش* 2؛ حسین رضایی3 | ||
1دانشگاه ارومیه | ||
2دانشگاه ارومیه- گروه مهندسی آب | ||
3دانشیار گروه مهندسی آب، دانشگاه ارومیه | ||
چکیده | ||
سابقه و هدف: دریاچه ارومیه به عنوان یک اکوسیستم آبی مهم در شمال غرب ایران واقع شده است. در 14 سال اخیر میانگین تراز سطح آب دریاچه ارومیه به 2/1272 متر تقلیل پیدا کرده و این به این معنی است که اختلاف تراز سطح اکولوژیک دریاچه و تراز سطح کنونی 2 متر است. خشک شدن دریاچه ارومیه باعث بروز مسائل و بحرانهای جدی برای حوضه، استانهای مجاور و کشور خواهد شد. در این تحقیق از پارامترهای موثر مستقیم و غیر مستقیم در پیش-بینی تراز سطح دریاچه از جمله تبخیر، رواناب ورودی به دریاچه، بارش، دما، باد، میانگین رطوبت هوا و تراز سطح آب دریاچه در ماه قبل به عنوان ورودیهای مدل استفاده شده است. مقایسه کارایی مدلهای شبکهی بیزین که یک مدل احتمالاتی تحت شرایط عدم قطعیت و الگوریتم ماشینی حداقل مربعات ماشین بردار پشتیبان، هدف اصلی تحقیق حاضر است. مواد و روشها: در تحقیق حاضر از دو روش حداقل مربعات ماشین بردار پشتیبان و شبکه بیزین در فرایند مدل-سازی استفاده گردید. در این مطالعه عوامل موثر در پیش بینی تراز سطح دریاچه در ماه قبل به عنوان ورودی و تراز سطح آب دریاچه در ماه کنونی به عنوان خروجی مدلها مورد بررسی قرار گرفت. جهت تخمین دما، تبخیر، بارش، باد و میانگین رطوبت هوا بر روی سطح دریاچه از دادههای پنج ایستگاه سینوپتیک مجاور دریاچه با برآورد ضریب تیسن هر ایستگاه و دادههای 13 ایستگاه هیدرومتری واقع بر رودخانههای منتهی به دریاچه جهت تشکیل پارامترهای ورودی دو مدل محاسبه گردید. یافتهها: تحلیل دادههای ایستگاههای هیدرومتری نشان داد که تنها چهار ایستگاه از 13 ایستگاه هیدرومتری از نرمال پیروی میکنند. مقایسه و بررسی نتایج دو مدل با بررسی ضرایب R2، RMSE، MBE و ناش ساتکلیف حاکی از برتری عملکرد مدل حداقل مربعات ماشین بردار پشتیبان در مقایسه با شبکه بیزین است. این مقادیر برای مدل برتر به ترتیب برابر با 3/92%، 082/0متر، 012/0-متر و 86/0 بدست آمد. نتیجهگیری: در این تحقیق معیارهای ارزیابی نشان داد که مدل حداقل مربعات ماشین بردار پشتیبان نسبت به مدل شبکه بیزین دارای برتری است. نکته حائز اهمیت در مقایسه دو مدل آن است که ماهیت مدل حداقل مربعات ماشین بردار پشتیبان، ماشینی است ولی ماهیت شبکه بیزین یک مدل احتمالاتی تحت شرایط عدم قطعیت است که در آن از توزیع نرمال جهت آموزش متغیرهای شبکه استفاده شده است. از آنجایی که ماهیت وقوع رخدادهای طبیعی تصادفی است، بنابراین استفاده از مدل شبکه بیزین نسبت به مدل حداقل مربعات ماشین بردار پشتیبان میتواند توصیه گردد. | ||
کلیدواژهها | ||
پیش بینی؛ تراز سطح اکولوژیک؛ دریاچه ارومیه؛ شبکه بیزین؛ حداقل مربعات ماشین بردار پشتیبان | ||
مراجع | ||
1.Abbaszadeh, A.A., Khalili, K., and Behmanesh, J. 2015. Application of Combined AR-ARCH model in Forecasting Urmia Lake Water Level. J. Soil Water Know. 25: 4/2. 175-186. (In Persian) 2.Ahmadi, F., and Radmanesh, F. 2016. Application of Bayesian Networks and Genetic Programming for Predicting Daily River Flow (Case study: BarandoozchayRiver). J. Irrig. Sci. Engin. 39: 4. 213-223. (In Persian)
3.Ahmadi, F., Radmanesh, F., and Mir Abbasi, N.R. 2016. Comparing the performance of Support Vector Machines and Bayesian networks in predicting daily river flow (Case study: BaranduzChaiRiver). J. Water Soil Cons. 22: 6. 171-186. (In Persian)
4.Alexandersson, H. 1986. A homogeneity test applied to precipitation data. Inter. J. Climatol. 6: 6. 661-675.
5.Alizadeh, A. 2010. Principles of Applied Hydrology. ImamRezaUniversity Press, 911p. (In Persian) 6.Anbari, M.J., and Tabesh, M. 2016. Failure Event Probability Calculation in Wastewater Collection Systems Using the Bayesian Network. J. Water Wastewater. 3: 48-61. (In Persian)
7.Bishop, C.M. 2006. Pattern recognition and machine learning. Springer.
8.Download.hugin.com. 2017. Introduction to the Hugin Development Environment / Manual. [online] Available at: http://download.hugin.com/webdocs/manuals/Htmlhelp/descr_NPC_ algorithm_pane.html [Accessed 31 Aug. 2017].
9.Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., and Rubin, D.B. 2014. Bayesian data analysis (Vol. 2). Boca Raton, FL: CRC press.
10. Ghgajarnia, N., Liyaghat, A., and Danesh Kar Araste, P. 2014. Verifying precipitation data of TAMAB and meteorology institute in Urmia basin. Water and Soil resources conservation 4: 1. 91-109. (In Persian)
11. Ghorbani, A.M., and Dehghani, R. 2014. Application of Bayesian Neural Networks, Support Vector Machines and Gene Expression Programming Analysis of Rainfall - Runoff Monthly (Case study: KakarezaRiver). J. Irrig. Sci. Engin. 39: 2. 125-138. (In Persian)
12.Hesar, A.S., Tabatabaee, H., and Jalali, M. 2012. Structure learning of Bayesian networks using heuristic methods. In Proc. of International Conference on Information and Knowledge Management (ICIKM 2012).
13.Kardan Moghadam, H., and Roozbahani, A. 2015. Evaluation of Bayesian networks model in monthly groundwater level prediction (Case study: Birjand aquifer). J. Water Irrig. Manage. 5: 2. 139-151. (In Persian)
14.Kelts, K., and Shahrabi, M. 1986. Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran. Paleogeography, Paleoclimatology, Paleoecology, 54 (1-4): 105-130.
15.Koop, G. 2010. Bayesian econometrics. Chichester [u.a.]: Wiley.
16.Lin, G.F., Chen, G.R., Wu, M.C., and Chou, Y.C. 2009. Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resources Research, 45: 8.
17.Madadgar, S., and Moradkhani, H. 2014. Spatio-temporal drought forecasting within Bayesian networks. J. Hydrol. 512: 134-146.
18.Mahmoudi, Kh.S., and Rezaie, H. 2013. Investigating and evaluating causes of fluctuations in Lake Urmia water level and providing various solutions. UrmiaUniversity, Faculty of Agriculture. 233p. (In Persian)
19.Mahsafar, H., Maknoun, R., and Saghafian, B. 2011. The Impact of Climate Change on UrmiaLake Water Level. J. Iran Water Resour. Res. 7: 1. 47-58. (In Persian)
20.Margaritis, D. 2003. Learning Bayesian Network Model Structure. Ph.D. Thesis. School of Computer Science, CarnegieMellonUniversity.
21.Mehdizadeh, S., Behmanesh, J., and Saadatnejad Gharahassanlou, H. 2017. Evaluation of gene expression programming and Bayesian networks methods in predicting daily air temperature. J. Agric. Meteorol. 4: 2. 1-13. (In Persian)
22.Mellit, A., Massi Pavan, A., and Benghanem, M. 2013. Least squares support vector machine for short term prediction of meteorological time series. Theor. Appl. Climatol. 111: 297-307.
23.Mohajerani, H., Kholghi, M., Mosaedi, A., Saidodin, A., and Meftah Halaghi, M. 2013. Quantitative Management of Groundwater Using Bayesian Decision Network. J. Water Soil. 26: 6. 1522-1534. (In Persian)
24.Moravaj, M., Khalili, K., and Behmanesh, J. 2016. Forecasting Lake Urmia water level using linear time series models. J. Water Soil Cons. 22: 5. 287-296. (In Persian)
25.Noori, R., Karbassi, A.R., Moghaddamnia, A., Han, D., Zokaei-Ashtiani, M.H., Farokhnia, A., and Gousheh, M.G. 2011. Assessment of input variables determination on the SVM model performance using PCA, Gamma test and forward selection techniques for monthly stream flow prediction. J. Hydrol. 401 (3-4): 177-189.
26.Pang, A.P., and Sun, T. 2014. Bayesian networks for environmental flow decision-making and an application in the Yellow River estuary, China. Hydrology and Earth System Sciences, 18 (5): 1641.
27.Parkes, B., and Demeritt, D. 2016. Defining the hundred-year flood: A Bayesian
approach for using historic data to reduce uncertainty in flood frequency estimates. J. Hydrol. 540, 1189-1208.
28. Seifi, A. 2011. Develop an expert system to predict daily reference evapotranspiration using a backup vector machine (SVM) and compare its results with ANFIS, ANN and empirical methods. TarbiatModarresUniversity, Faculty of Agricalture. 153p. (In Persian)
29. Subramanya, K. 2013. Engineering Hydrology, 4e. Tata McGraw-Hill Education.
30.Vapnik, V. 1998. Statistical Learning Theory. John Wiley&Sons. Inc., New York.
31. Xue, J., Gui, D., Zhao, Y., Lei, J., Zeng, F., Feng, X., and Shareef, M. 2016. A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks. J. Hydrol. 540: 1209-1222. | ||
آمار تعداد مشاهده مقاله: 690 تعداد دریافت فایل اصل مقاله: 638 |