
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,489 |
تعداد مشاهده مقاله | 8,608,388 |
تعداد دریافت فایل اصل مقاله | 8,199,992 |
بررسی رابطه شاخص دبی پایه با دما و بارندگی به روش موجک همدوس (مطالعه موردی: حوزه آبخیز گرگانرود) | ||
مجله پژوهشهای حفاظت آب و خاک | ||
مقاله 1، دوره 26، شماره 1، فروردین و اردیبهشت 1398، صفحه 1-25 اصل مقاله (1.76 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2019.14684.2963 | ||
نویسندگان | ||
سید مرتضی سیدیان* 1؛ حامد روحانی2؛ معصومه فراستی3؛ سید رضا حسینی4 | ||
1هیات علمی | ||
2استادیار دانشاه گنبد کاووس | ||
3استادیار گروه آبخیزداری دانشگاه گنبد کاووس | ||
4دانشجوی کارشناسیارشد آبخیزداری دانشگاه گنبدکاووس | ||
چکیده | ||
تغییر اقلیم در نواحی مختلف دنیا باعث تغییر پارامترهای هواشناسی شده است. خشکسالی و کمآبی مشکلی است که ممکن است بسیاری از کشورها را دچار بحران نماید. بنابراین مطالعه تغییرات پارامترهای هواشناسی و تأثیر آن بر دبی رودخانهها که عامل مهمی در تأمین نیازهای آبی میباشند حائز اهمیت است. هدف از این تحقیق بررسی ارتباط پارامترهای دما و بارندگی با شاخص دبی پایه در رودخانه گرگانرود با روش انتقال موجک پیوسته و همدوسی موجک میباشد. ابتدا دبی پایه با استفاده از روش دو پارامتره اکهارت تعیین و سپس شاخص دبی پایه محاسبه شد. شاخص دبی پایه نشان دهنده سهم آبهای زیرزمینی در جریان سطحی رودخانه است که کمترین شاخص سالیانه مربوط به ایستگاه تقیآباد با مقدار 30/0 و بیشترین شاخص مربوط به ایستگاه تمر با مقدار 66/0 است. سپس رابطه درجه حرارت و بارندگی با شاخص دبی پایه شش ایستگاه (تمر، لزوره، نوده، ارازکوسه، سدگرگان و تقی آباد) واقع در حوزه آبخیز گرگانرود در یک دوره 33 ساله (1360 تا 1392) با روش انتقال موجک پیوسته و همدوسی موجک بررسی شد. تحلیل ارتباط دادههای سالیانه دما و بارش بیانگر تأثیر دو پارامتر دما و بارش بر شاخص دبی پایه است. بررسی شدت همدوسی بین بارندگی و شاخص دبی پایه در ایستگاههای مورد مطالعه نشان داد بیشترین همبستگی در دورههای 1 تا 4 ساله وجود دارد که این همبستگی در سالهای میانی ایستگاههای سد گرگان و تقیآباد غیر مستقیم و در سایر ایستگاهها و سالهای ابتدایی و انتهایی ایستگاه تقیآباد مستقیم است. در دورههای 4 تا 8 ساله نیز ارتباط و همبستگیهایی بین بارندگی و شاخص دبی پایه وجود دارد که در ایستگاههای لزوره و نوده مستقیم و ارازکوسه و تمر غیر مستقیم است. همچنین در دوره 8 تا 10 ساله بیشترین همبستگی در ایستگاههای ارازکوسه و نوده و با شدت کمتر در ایستگاه سدگرگان وجود دارد که جهت پیکانها مستقیم بودن این ارتباط را نشان داد. تحلیل شدت همدوسی بین دما و شاخص دبی پایه نشان میدهد ارتباط و همبستگیهای مستقیم و با شدت زیاد مربوط به ایستگاههای سدگرگان در سالهای 1384 تا 1388 در دوره 3-4 ساله، لزوره در سالهای 1381 تا 1385 با دوره بازگشت 4 ساله و تقیآباد در سالهای 1363 تا 1368 با دوره بازگشت 1 تا 5 ساله است. همچنین همبستگیهای غیر مستقیم مربوط به ایستگاههای نوده و تمر به ترتیب در سالهای 1366 تا 1369 و 1390 تا 1392 با دوره بازگشت کوتاه مدت 2 و 3 ساله و ایستگاه تقیآباد در سالهای 1372 تا 1379 و تمر 1371 تا 1392 با دوره بازگشت بلند مدت 8 تا 10 ساله است. با توجه به شرایط ایستگاهها ممکن است ارتباط بارندگی با شاخص دبی پایه مستقیم و یا غیر مستقیم باشد. همچنین در بعضی از ایستگاهها در دورههایی رابطه مستقیم و در مابقی دوره رابطه عکس وجود دارد. ارتباط بین شاخص دبی پایه و دما نیز در بعضی از ایستگاهها مستقیم و در برخی غیرمستقیم است. | ||
کلیدواژهها | ||
بارندگی؛ دما؛ دبی پایه؛ موجک پیوسته؛ موجک همدوس | ||
مراجع | ||
1.Aguiar-Conraria, L., Azevedo, N.,and Soares, M.J. 2008. Using waveletsto decompose the time- frequencyeffects of monetary policy. Physica A:Statistical Mechanics and its Applications. 387: 12. 2863-2878. 2.Ataee, H., and Fanayi, R. 2016.Association of solar spots and minimumtemperature of Isfahan province.Geography and Environmental Planning.27: 2. 35-48. (In Persian) 3.Birsan, M.V., Zaharia, L., Chendes, V., andBranescu, E. 2012. Recent trends in streamflow in Romania (1976-2005). RomanianReports in Physics. 64: 1. 275-280. 4.Chen, F.Y., Jinge, W., Hsin, F.Y., andCheng, H.L. 2015. Spatial and TemporalStreamflow Trends in Northern Taiwan.Water, 7: 2. 634-651. 5.Chen, L.Q., Liu, C.M., Hao, F.H., Liu,J.Y., and Dai, D. 2006. Change of theBaseflow and It’s Impacting Factors inthe Source Regions of Yellow River. J.Glaciol. Geocryol. 28: 2. 141-148. 6.Dams, J., Salvadore, E., Van Daele, T.,Ntegeka, V., Willems, P., and Batelaan,O. 2012. Spatio-temporal impact ofclimate change on the groundwatersystem. Hydrologucal Earth System Sciences. 16: 5. 1517-1531. 7.Daubechies, I. 1990. The wavelet transformtime-frequency localization and signalanalysis. J. Inf. Theory. 36: 5. 961-1004. 8.Eckhardt, K. 2005. How to construct recursivedigital filters for baseflow separation.Hydrological Procese. 19: 2. 507-515. 9.Eckhardt, K. 2008. A comparison of baseflow indices, which were calculated withseven different base flow separationmethods. J. Hydrol. 352: 1-2. 168-173. 10.Fan, Y., Chen, Y., Liu, Y., and Li, W. 2013.Variation of baseflows in the headstreams ofthe Tarim River Basin during 1960-2007. J.Hydrol. 487: 3. 98-108. 11.Farge, M. 1992. Wavelet transforms and their applications to turbulence. J. Ann.Rev. Fluid Mech. 24: 1. 395-457. 12.Ficklin, D.L., Robeson, S.M., andKnouft, J.H. 2016. Impacts of recentclimate change on trends in baseflow andstormflow in United Stateswatersheds,Geophys. Res. Lett. 43: 10. 1002-1012. 13.Gan, R., Sun, L., and Luo, Y. 2015.Baseflow characteristics in alpine rivers - Amumulti-catchment analysis in NorthwestChina. J. Moun. Sci. 12: 3. 614-625. 14.Ghanbarpur, M.R., Teymuri, M., andGholami, Sh.A. 2008. Comparison ofhydrograph separation methods (Casestudy: Karun catchment). J. Agric. Sci.Natur. Resour. 12: 44. 1-10. (In Persian) 15.Ghasmzadeh, M., Azad, N., and Sharghi,A. 2016. Investigating the influence of hydrocolimatological parameters ofRussian water level in Urmia Lake usingWavelet Connection Criterion. J. CivilEnviron. Res. 2: 1. 37-50. (In Persian) 16.Gonzales, A.L., Nonner, J., Heijkers, J.,and Uhlenbrook, S. 2009. Comparisonof different base flow separationmethods in a lowland catchment.Hydrological Earth System Sciences.13: 11. 2055-2068. 17.Gregor, M. 2010. User Manual "BFI+3.0".18.Grinsted, A., Moore, J.C., and Jevrejeva,S. 2004. Application of the crosswavelet transform and waveletcoherence to geophysical time series. Nonlinear processes in geophysics.11: 5. 561-566. 19.Haeberli, W., Guodong, C., Gorbunov,A.P., and Harris, S.A. 1993. Mountainpermafrost and climatic change. Permafrostand Periglacial Processes. 4: 2. 165-174.20.Hasani, M., Rahimi, M., Samee, M., andKhamoushi, M.R. 2012. Study ofefficiency of various base flowseparation methods in arid and semi-aridrivers (Case study: Hablehroud basin).Arid Biom. Sci. Res. J. 2: 2. 275-287. (In Persian) 21.Hodgkins, G.A., and Dudley, R.W. 2011.Historical summer baseflow andstormflow trends for New England Rivers.Water Resources Research. 47: 7. 1-16. 22.Holman, I.P., Rivas-Casado, M.,Bloomfield, J.P., and Gurdak, J.J. 2011.Identifying non-stationary groundwaterlevel response to North Atlantic oceanatmosphere teleconnection patternsusing wavelet coherence. Hydrogeol. J.19: 6. 1269-1278. 23.Jiang, T., Su, B., and Hartmann, H.2007. Temporal and spatial trends ofprecipitation and river flow in theYangtze River Basin, 1961-2000.Geomorphology 85: 3-4. 143-154. 24.Kahya, E., and Kalayci, S. 2004. Trendanalysis of stream flow in Turkey. J.Hydrol. 289: 1-4. 128-144. 25.Khorshiddost, A.M., Rezaei Banafsheh,M., Mir Hashemi, H., and Kakolvand,Y. 2015. Investigation of the process ofrainfall-discharge changes in thesub basins of Karkheh river usingnon-parametric methods Case study:Kashkan Basin. Science and Engineeringof Irrigation 38: 4. 177-188. (In Persian) 26.Kumar, S., Merwad, V., Kam, J., andK., Thurner. 2009. Stream flow trendsin Indiana: Effects of long termpersistence, precipitation and subsurfacedrains. J. Hydrol. 374: 1-2. 171-183. 27.Liang, L., and Liu, Q. 2014. Streamflowsensitivity analysis to climate changefor a large water-limited basin.Hydrological Process 28: 4. 1767-1774. 28.Longobardi, A., and Villani, P.2008. Baseflow index regionalizationanalysis in a Mediterranean area anddata scarcity context: Role of thecatchment permeability index. J. Hydrol.355: 1-4. 63-75. 29.Lyon, S.W., and Destouni, G. 2010.Changes in catchment-scale recessionflow properties in response to permafrostthawing in the Yukon River Basin. Inter.J. Climatol. 30: 14. 2138-2145. 30.Mehmet, O., Ashok, K., Mishra, V.,and Singh, P. 2010. Scalingcharacteristics of precipitation data inconjunction with wavelet analysis. J.Hydrol. 395: 3-4. 279-288. 31.Mwakalila, S., Feyen, J., and Wyseureb,G. 2002. The influence of physicalcatchment propertieson baseflow insemi-arid environments. J. Arid Environ.52: 2. 245-258. 32.Nademi, Y., and Khochiani, R. 2017.Interaction of Stock, Currency and GoldMarkets in Iran: An Economic PhysicsAnalysis. Magazine of Finance andManagement of Bonds. 31: 2. 149-166.(In Persian) 33.Nader Sefat, M.H., and Saidian, F. 2010.Study of Flooding Process in WatershedAreas by Investigating the Permeabilityand Potential of Runoff in GeologicalFormations, Case study in KardehWatershed - Razavi Khorasan Province.Geograph. Res. Quar. J. 4: 12. 198-163.(In Persian) 34.Nathan, R.J., and McMahon, T.A. 1990.Evaluation of automated techniques forbase flow and recession analyses. WaterResource Researchs. 26: 7. 1465-1473. 35.Nicholls, R.J., and Cazenave, A. 2010.Sea-level rise and its impact on coastalzones. Science. 328: 5985. 1517-1520. 36.Obrien, R.J., Misstear, B.D., Gill, L.W.,Deakin J.L., and Flynn, R. 2013.Developing an integrated hydrographseparation and lumped modelingapproach to quantifying hydrologicalpathways in Irish river catchments.J. Hydrol. 486: 12. 259-270. 37.Percival, D.B., and Walden, A.T. 2000.Wavelet methods for time seriesanalysis. Cambridge University Press,Cambridge, 594p. 38.Qin, J., Ding, Y., Han, T., and Liu, Y. 2017.Identification of the Factors Influencing theBaseflow in the Permafrost Region of theNortheastern Qinghai-Tibet Plateau. Water.9: 10. 666-682. 39.Rahimi, L., Dehghani, A.A., Ghorbani,Kh., and Abdolhosseini, M. 2014. Studyof changes in total flow rate and flowrate at the base of the hydrometricstation of Erzakoush (Gorgan-e-Rud watershed in Golestan province). J. Water Soil Cons. 21: 2. 173-189.(In Persian)40.Rogger, M., Chirico, G.B., Hausmann,H., Krainer, K., Bruckl, E., Stadler, P.,and Bloschl, G. 2017. Impact ofmountain permafrost on flow path and runoff response in a high alpinecatchment. Water Resources Research53: 2. 1288-1308. 41.Sheikh, V.B., Bahremand, A., andMooshakhian, Y. 2011. A comparison oftrends in hydrologic variables in theAtrak River basin using non-parametrictrend analysis tests. J. Water Soil Cons. 18: 2. 1-23. (In Persian) 42.Sheng, Y., Li, J., and Wu, J.C. 2010.Distribution patterns of permafrost in theupper area of Shule River with theapplication of GIS technique. J. ChinaUniv. Min. Technol. 39: 3. 32-39. 43.Strauch, A.M., MacKenzie, R.A.,and Tingley, R.W. 2017. Base flow‐driven shifts in tropical stream temperature regimes across a meanannual rainfall gradient. HydrologicalProcesses. 31: 10. 1678-1689. 44.Taormina, R., Chau, K.W., andSivakumar, B. 2015. Neural network riverforecasting through baseflow separationand binary-coded swarm optimization. J.Hydrol. 529: 3. 1788-1797. 45.Teymuri, M. 2014. Evaluation of basedischarge separation methods based onthe analysis of deformation branch.Geograph. Res. Quar. J. 29: 4. 57-66.(In Persian) 46.Teymuri, M., Ghanbarpur, M.R., BashirGonbad, M., Zolfaqari, M., and KazemiNia, S. 2011. Comparison of base flowindex in hydrograph separation methods insome river of west Azarbayjan province.J. Water Soil Sci. 15: 57. 219-228.(In Persian) 47.Torrence, C., and Webster, P.J. 1999.Interdecadal changes in the enso-monsoonsystem. J. Clim. 12: 8. 2679-2690.48.Torrence, C., and Compo, G.P.1998. A practical guide to waveletanalysis. American Meteorological Society.79: 1. 61-78. | ||
آمار تعداد مشاهده مقاله: 623 تعداد دریافت فایل اصل مقاله: 776 |