
تعداد نشریات | 13 |
تعداد شمارهها | 626 |
تعداد مقالات | 6,517 |
تعداد مشاهده مقاله | 8,746,462 |
تعداد دریافت فایل اصل مقاله | 8,317,291 |
اثر کاربرد بیوچارهای مختلف و مواد اولیه آنها بر رشد گیاه ذرت و فراهمی پتاسیم در یک خاک آهکی | ||
مجله مدیریت خاک و تولید پایدار | ||
مقاله 5، دوره 9، شماره 4، اسفند 1398، صفحه 89-107 اصل مقاله (494.8 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejsms.2020.16369.1878 | ||
نویسندگان | ||
مجید فروهر1؛ رضا خراسانی* 2؛ امیر فتوت3؛ حسین شریعتمداری4؛ کاظم خاوازی5 | ||
1دانشجوی دکتری گروه علوم خاک، دانشگاه فردوسی مشهد،مربی پژوهش بخش تحقیقات خاک و آب مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران، | ||
2دانشیار گروه علوم خاک، دانشگاه فردوسی مشهد، | ||
3دانشیار گروه علوم خاک، دانشگاه فردوسی مشهد، استاد گروه علوم خاک، دانشگاه فردوسی مشهد، | ||
4استاد گروه علوم خاک، دانشگاه صنعتی اصفهان | ||
5استاد بخش تحقیقات بیولوژی خاک مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی | ||
چکیده | ||
چکیده سابقه و هدف: امروزه استفاده از بیوچار در مدیریت پایدار حاصلخیزی خاک به عنوان یک تفکر راهبردی چند منظوره و سازگار با محیط زیست، توجه بسیاری از محققین را در سطح جهانی به خود معطوف کرده است. با توجه به اثرات بارز و در عین حال متفاوت مشاهده شده از بیوچارهای مختلف در افزایش کربن آلی خاک ، غلظت قابل استفاده برخی عناصر غذایی و رشد گیاه، ضروری است قبل از استفاده گسترده از هر نوع بیوچاری، واکنش گیاه نسبت به آن، مورد بررسی قرار گیرد. در همین راستا در تحقیق حاضر تأثیر مصرف سه نوع بیوچار مختلف و مواد اولیه آنها، بر فراهمی پتاسیم و رشد گیاه ذرت، مورد مطالعه قرارگرفت. مواد و روشها: این تحقیق به صورت آزمایشگاهی و گلخانهای در قالب دو طرح کاملا تصادفی انجام شد. تیمارهای آزمایش در هردو بخش گلخانهای و آزمایشگاهی عبارت بودند از: شاهد(بدون مصرف ماده آلی)، کمپوست زباله شهری، لجن فاضلاب، کود گاوی و بیوچارهای آنها. در بخش آزمایشگاهی، اثرتیمارها بر پتاسیم قابل استفاده خاک و پارامترهای کمیت –شدت پتاسیم بررسی شد. دربخش گلخانهای، اثر تیمارها بر رشد گیاه، غلظت و جذب پتاسیم در گیاه مورد بررسی قرار گرفت. با استفاده از نتایج هر دو بخش، ارتباط بین پتاسیم قابل استفاده خاک با پارامترهای کمیت – شدت پتاسیم و روابط بین پارامترهای گیاهی با پتاسیم قابل استفاده خاک مورد بررسی قرارگرفت. یافتهها: کود گاوی و بیوچار آن با ایجاد افزایش بیشتری در پارامترهای کمیت-شدت پتاسیم، سبب افزایش پتاسیم قابل استفاده خاک نسبت به شاهد شدند. در حالی که لجن فاضلاب و بیوچار آن با ایجاد افزایش کمتری در پارامترهای کمیت- شدت پتاسیم، پتاسیم قابل استفاده خاک را به مقدار کمتری افزایش دادند. کمپوست زباله شهری و بیوچار آن از لحاظ تاثیر بر پارامترهای کمیت-شدت پتاسیم و ایجاد افزایش در پتاسیم قابل استفاده خاک در بین این دو، قرار داشتند. در مجموع، ترتیب کلی تیمارها از لحاظ افزایش فراهمی پتاسیم، به صورت زیر بود: 1-بیوچار کود گاوی 2-کود گاوی 3- بیوچار کمپوست زباله شهری 4-کمپوست زباله شهری 5-بیوچار لجن فاضلاب و لجن فاضلاب، 6-شاهد. با این حال با توجه به وابستگی رشد گیاه به عوامل متعددی فراتر از پتاسیم قابل استفاده خاک، ترتیب تیمارها در بهبود شرایط رشد گیاه با ترتیب تیمارها در افزایش فراهمی پتاسیم، مطابقت نداشت. ترتیب برتری تیمارها در بهبود شرایط رشد گیاه و افزایش وزن خشک گیاه به صورت زیر استنتاج شد: 1-کودگاوی 2-بیوچار لجن فاضلاب و لجن فاضلاب 3- بیوچار کمپوست زباله شهری 4-بیوچارکودگاوی 5-شاهد وکمپوست زباله شهری. نتیجهگیری: با توجه به برتری بیوچار کمپوست زباله شهری نسبت به کمپوست زباله شهری از هر دو جنبه تاثیر بر فراهمی پتاسیم و تاثیر بر وزن خشک گیاه، میتوان در شرایط مشابه آزمایش، مصرف بیوچار کمپوست زباله شهری را بر مصرف کمپوست زباله شهری ترجیح داد. با توجه به کاهش رشد گیاه در بیوچار کود گاوی نسبت به کود گاوی و در عین حال برتری بیوچار کود گاوی از لحاظ تاثیر بر فراهمی پتاسیم، و با توجه به خصوصیات آن، به نظر میرسد که در مصرف بیوچار کود گاوی بایستی ملاحظاتی نظیر شوری و موازنه عناصر غذایی با دقت بیشتری مورد توجه قرار گرفته و مدیریت شود. علیرغم تشابه بیوچار لجن فاضلاب با لجن فاضلاب در افزایش رشد گیاه و مقدار پتاسیم قابل استفاده، با توجه به بالاتر بودن ظرفیت بافری بالقوه پتاسیم در این بیوچار و در نتیجه احتمال تداوم بیشتر تامین پتاسیم قابل استفاده توسط آن، میتوان در شرایط مشابه آزمایش، مصرف این بیوچار را بر مصرف لجن فاضلاب ترجیح داد. | ||
کلیدواژهها | ||
بهسازهای آلی؛ کود گاوی؛ کمپوست زباله شهری؛ لجن فاضلاب | ||
مراجع | ||
1.Aguilar-Chavez, A., Diaz-Rojas, M., Cardenas-Aquino, M.D., Dendooven, L., and Luna-Guido, M. 2012. Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biology and Biochemistry,52: 90-95.
2.Amin, A.E.A.Z. 2016. Impact of Corn Cob Biochar on Potassium Status and Wheat Growth in a Calcareous Sandy Soil. Communication in Soil Science and Plant Analysis. 47: 17. 2026-2033.
3.Arabi. Z., Eghtedaey, H., Gharehchmaghloo, B., and Faraji, A. 2018. Effects of biochar and bio-fertilizer on yield and qualitative properties of soybean and some chemical properties of soil. Arab. J. Geosci. 11: 672. 1-9.
4.Bahmani, M., Salehi, M.H., and Hosseinpour, A. 2012. The study of the Quantity- Intensity ratio of potassium in the calcareous soils of arid and semi-arid region in Isfahan and Charmahal provinces. J. Water Soil. 26: 2. 349-360. (In Persian)
5.Biederman, L.A., and Harpole, W.S. 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Global Change Biology Bioenergy. 5: 202-214. 6.Bostani, A., and Savaghebi, G.R. 2007. Quantity- intensity curve of potassium and correlation of its parameters with the characteristics of some soil cultivated by sugarcane of Khuzestan province. Iran. J. Agric. Sci. 37: 3. 471-479. (In Persian)
7.Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. 2007. Agronomic values of green waste biochar as a soil amendment. Austr. J. Soil Res. 45: 629-634.
8.Chintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D., Papiernik, S., Clay, D.E., and Gulbrandson, D.W. 2013. Nitrate sorption and desorption by biochars produced from microwave pyrolysis. Microporous and Mesoporous Materials. 179:
9.Deenik, J.L., McClellan, T., Uehara, G., Antal, M.J., and Campbell, S. 2010. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci. Soc. Amer. J. 74: 1259-1270.
10.Forouhar, M., Khorassani, R., Fotovat, A., Shariatmadari, H., and Khavazi, K. 2018. The influence of different biochars and their feedstock on some soil chemical properties and nutrients over the time in a calcareous soil. J. Water Soil. 32: 2. 299-312. (In Persian)
11.Galinato, S.P., Yoder, J.K., and Granatstein, D. 2011. The economic value of biochar in crop production and carbon sequestration. Energy Policy.39: 6344-6350.
12.Gaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A., Fisher, D.S. 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 102: 623-633.
13.Gayomba, S.R., Zhai, Z., Jung, H., and Vatamaniuk, O.K. 2015. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. Frontiers in Plant Science. 6: 716-726.
14.Haefele, S.M., Konboon, Y., Wongboon, W., Amarante, S., Maarifat, A.A., Pfeiffer, E.M., and Knoblauch, C. 2011. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research. 121: 430-440.
15.Hosseinpour, A., and Kalbasi, M. 2000. Quantitiy-Intensity ratio of potassium and the correlation of its parameters with soil properties in some soils of Iran. J. Water Soil Sci. 4: 1. 43-55. (In Persian)
16.Inal, A., Gunes, A., Sahin, O., Taskin, M.B., and Kaya, E.C. 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use and Management. 31: 106-113.
17.Jeffery, S., Verheijen, F.G.A., and van der Velde, M., and Bastos, A.C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment. 144: 175-187.
18.Jha, P., Biswas, A.K., Lakaria, B.L., and Rao, A.S. 2010. Biochar in agriculture - prospects and related implications. Current Science. 99: 1218-1225.
19.Keiluweit, M., Nico, P.S., Johnson, M., and Kleber, M. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology. 44: 1247-1253.
20.Kookana, R.S., Sarmah, A.K., Van Zwieten, L., Krull, E., and Singh, B. 2011. Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Advances in agronomy. 112: 103-143.
21.Lehmann, J., da Silva, J.P., Steiner, C., Nehls, T., Zech, W., and Glaser, B. 2003. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon Basin: fertilizer, manure and charcoal amendments. Plant and Soil. 249: 343-357.
22.Lehmann, J., Gaunt, J., and Rondon, M. 2006. Biochar sequestration in terrestrial ecosystems a review. Mitigation and Adaptation Strategies for Global Change. 11: 403-427.
23.Lehmann, J., and Stephen J. 2009. Biochar for Environmental Management Science and Technology. London. Sterling, VA. 499p.
24.Lindsay, W. 1979. Chemical Equilibria in Soils. John Wiley and Sons, New York. Pp: 1-20.
25.Loeppert, R.H., and Suarez, D.L. 1996. Carbonate and Gypsum, P 436-474. In: D.L. Sparks (ed.) Methods of Soil Analysis. Part 3: chemical methods. SSSA Book Series no. 5, Madison, WI. 26.Luo, Y., Jiao, Y., Zhao, X., Li, G., Zhao, L., and Meng, H. 2014.Improvement to maize growth caused by biochars derived from six feedstocks prepared at three different temperatures. J. Integ. Agric. 13: 533-540.
27.Masek, O., Brownsort, P., Cross, A., and Sohi, S. 2013. Influence of production conditions on the yield and environmental stability of biochar. Fuel. 103: 151-155.
28.McElligott, K.M., Page-Dumroese, D.S., Coleman, M., and McElligott, K. 2011. Bioenergy production systems and biochar application in forests: potential for renewable energy, soil enhancement, and carbon sequestration. US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO. 14p.
29.Mukherjee, A., and Lal, R. 2014.The biochar dilemma. Soil research.52: 217-230.
30.Najafi Ghiri, M. 2014. The effect of different biochars on some soil properties and availability of some nutrients in a calcareous soil. Iran. J. Soil Res. 29: 2. 351-358.
31.Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W., and Niandou, M.A.S. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science. 174: 105-112.
32.Nzanza, B., Marais, D., and Soundy, P. 2012. Effect of arbuscular mycorrhizal fungal inoculation and biochar amendment on growth and yield of tomato. Inter. J. Agric. Biol. 14: 965-969.
33.Oram, N.J., Van de Voorde, T.F.J., Ouwehand, G.J., Bezemer, T.M., Mommer, L., Simon Jeffery, S., and Groenigen, J.W.V. 2014. Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agriculture, Ecosystems and Environment. 191: 92-98
34.Pennock, D., McKenzie, N., and Montanarella, L. 2015. Status of the world's soil resources. Technical summary. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy.
35.Preston, C.M., and Schmidt, M.W.I. 2006. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences.3: 397-420.
36.Quilliam, R.S., Marsden, K.A., Gertler, C., Rousk, J., DeLuca, T.H., and Jones, D.L. 2012. Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agriculture, Ecosystems and Environment. 158: 192-199.
37.Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R. and Lehmann, J. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils. 48: 271-284.
38.Schmidt, M.W.I., and Noack, A.G. 2000. Black carbon in soils and sediments: analysis, distribution, implications and current challenges. Global Biogeochemical Cycles. 14: 777-793.
39.Spokas, K.A., Cantrell, K.B., Novak, J.M., Archer, D.W. et al. 2012. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual.41: 973-989.
40.Tehrani, M., Balali, M.R., Moshiri, F. and Daryashenas, A. 2013. Recommendation and estimating of fertilizers in Iran: Challenges and Solutions. Iran. J. Soil Res. 26: 2. 123-144.
41.Wang, L., Xue, C., Nie, X., Liu, Y., and Chen, F. 2018. Effects of biochar application on soil potassium dynamics and crop uptake. J. Plant Nutr. Soil Sci. 181: 5. 635-643.
42.Widowati and Asnah. 2014. Biochar can enhance potassium fertilization efficiency and economic feasibility of Maize cultivation. J. Agric. Sci. 6: 2. 24-32.
43.Yeledhalli, N.A., Prakash, S.S., Patil, C.V., Ravi, M.V., and Rao, K.N. 2007. Potassium kinetics in solid wastes amended vertisols of north eastern arid zone of Karnataka. Karnataka J. Agric. Sci. 20: 3. 518-523.
44.Zhang, Z.H., Solaiman, Z.M., Meney, K., Murphy, D.V., and Rengel, Z. 2013. Biochars immobilize soil cadmium, but do not improve growth of emergent wetland species Juncus subsecundus in cadmium-contaminated soil. J. Soil Sed. 13: 1. 140-151.
45.Zhao, X.R., Li, D., Kong, J., and Lin, Q. M. 2014. Does biochar addition influence the change points of soil phosphorus leaching? J. Integ. Agric. 13: 3. 499-506.
46.Zolfi, M., Rownaghi, A.M., Karimian, N., Ghasemi, R., and Yasrebi, J.2016. The effect of biochars produced of cheeken manure in different temperatures, on chemical properties of a calcareous soil. J. Water Soil Sci.75: 73-86. (In Persian) | ||
آمار تعداد مشاهده مقاله: 676 تعداد دریافت فایل اصل مقاله: 485 |