
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,623,460 |
تعداد دریافت فایل اصل مقاله | 8,213,311 |
ارزیابی مدل ORYZA2000 در شبیهسازی عملکرد و بهرهوری تولید برنج تحت مدیریتهای زراعی. | ||
مجله پژوهشهای حفاظت آب و خاک | ||
مقاله 3، دوره 27، شماره 1، فروردین و اردیبهشت 1399، صفحه 49-69 اصل مقاله (1.16 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2020.16036.3126 | ||
نویسندگان | ||
پویا اعلایی بازکیایی1؛ بهنام کامکار* 2؛ ابراهیم امیری3؛ حسین کاظمی4؛ مجتبی رضایی5 | ||
1دانشجوی دکتری رشته زراعت دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
2استاد گروه زراعت دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
3استاد گروه مهندسی آب دانشگاه آزاد اسلامی واحد لاهیجان | ||
4استادیار گروه زراعت دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
5موسسه تحقیقات برنج کشور . سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت ، ایران. | ||
چکیده | ||
سابقه و هدف: ایران کشوری نیمهخشک با میانگین بارندگی سالانه برابر ۲۴۰ میلیمتر و ۵۷/0 میلیون هکتار شالیزار میباشد. رشد بیسابقه تقاضا برای مصرف آب در بخشهای صنعتی، شرب و کاهش میزان آب قابلاستفاده در بخش کشاورزی موجب گردیده که استفاده از آب در تولید برنج کاهش یافته و این امر تولید برنج را تهدید میکند. از مدلهای شبیهسازی گیاهان زراعی برای انجام مطالعات مختلف از جمله انتخاب گیاه و رقم مناسب برای کاشت، تعیین بهترین مدیریت زراعی، برآورد ظرفیت تولید منطقهای میتوان استفاده نمود. هدف از این پژوهش بررسی دقت ORYZA2000 در شبیهسازی عملکرد دانه و زیست-توده و بررسی بیلان و بهرهوری تولید برنج تحت تیمارهای آبیاری و تاریخ کاشت میباشد. مواد و روشها: بهمنظور ارزیابی مدل ORYZA2000 و بررسی بهرهوری تولید برنج تحت شرایط مدیریت آبیاری و تاریخ کاشت، آزمایشی بهصورت کرتهای خردشده با طرح پایه بلوکهای کامل تصادفی در سه تکرار بر روی رقم محلی (هاشمی) در دو سال زراعی 1395 و 1396 در موسسه تحقیقات برنج ایران، رشت، انجام گردید. دور آبیاری بهعنوان عامل اصلی در چهار سطح غرقاب دائمی شامل دور آبیاری 5، 10 و 15 روز و تاریخ کاشت بهعنوان عامل فرعی در سه سطح (اول اردیبهشت، بیستم اردیبهشت و دهم خرداد) در نظر گرفته شدند. ارزیابی مقادیر شبیهسازی و اندازهگیری شده عملکرد دانه و عملکرد زیستی با استفاده از مؤلفههای ضریب تبیین، آزمون t و ریشه میانگین مربعات خطا (RMSE) و ریشه میانگین مربعات خطای نرمال شده (RMSEn) انجام گرفت. در این تحقیق معادله بیلان آب در طول فصل زراعی در نظر گرفته شد که اجزای آن شامل آبیاری، بارندگی، تبخیر واقعی، تعرق واقعی، نشت و نفوذ عمقی و تغییرات آب ذخیره شده در منطقه توسعه ریشه، میباشند. مقدار آبیاری برای هر کرت اندازهگیری شد، مقدار بارندگی نیز از ایستگاه هواشناسی رشت دریافت شد، سایر اجزای معادله بیلان آب با استفاده از مدل ORYZA2000 محاسبه گردید. در مدل ORYZA2000 مقدار تبخیر و تعرق پتانسیل با استفاده از معادله پریستلی تیلور محاسبه شد. بهرهوری آب بر اساس میزان عملکرد دانه برنج به ازای میزان تعرق، تبخیر-تعرق، آبیاری و مجموع بارش و آبیاری مورد بررسی قرار گرفت. یافتهها: بر اساس نتایج تحقیق، ریشه میانگین مربعات خطای نرمال شده عملکرد دانه و عملکرد زیستی به ترتیب 8 و 6 درصد تعیین گردید. نتایج این پژوهش نشان داد که در بین مدیریتهای آبیاری، با توجه به اجزای بهرهوری آب، دوره آبیاری غرقاب از نظر تعرق و مجموع تبخیر و تعرق و دور آبیاری 15 روزه از نظر میزان آب ورودی به مزرعه و میزان آبیاری، بیش-ترین بهرهوری را داشتند. در بین تاریخهای کاشت، تاریخ کاشت بیستم اردیبهشت با دارا بودن مقدار متوسط عملکرد دانه 3871 کیلوگرم در هکتار، بیشترین مقدار بهرهوری آب مبتنی بر تعرق، تبخیر و تعرق و تاریخ کاشت یک اردیبهشت بهرهوری آب بر مبنای آبیاری و مجموع آبیاری و بارندگی را دارا بود. در این شرایط، تاریخ کشت یک اردیبهشت و 20 اردیبهشت به ترتیب با میانگین 136 و 116 میلیمتر، بیشترین و کمترین ذخیره آب را داشتند. بیشترین میزان ذخیره آب طی دو سال آزمایش در دور آبیاری 10 و 15 روزه (به ترتیب 145 و 143 میلیمتر) و کمترین ذخیره در تیمار غرقاب (92 میلیمتر) مشاهده شد. نتیجهگیری: با در نظر گرفتن میزان عملکرد شلتوک و زیستتوده و بهرهوری آب و میزان مصرف آب، تیمار آبیاری پنجروزه در تاریخ کاشت یک اردیبهشت بهترین عملکرد شلتوک و زیستتوده را داشته است. این تیمار با نه درصد کاهش مصرف آب و شش درصد کاهش عملکرد شلتوک، بهترین تیمار از نظر بهرهوری و تولید برنج بوده است. با توجه به تحقیق حاضر میتوان از مدل ORYZA2000 برای پشتیبانی نتایج آزمایشهای تحت شرایط مدیریت آبیاری و تاریخ کاشت استفاده نمود. | ||
کلیدواژهها | ||
آبیاری؛ بیلان آب؛ تاریخ کاشت؛ مدلسازی | ||
مراجع | ||
1.Agricultural Statistics 2017. Volume I: Crop products. 2015-16. Office of Statistics and Information -Technology, Deputy Director of Planning and Economic Affairs. Ministry of Agricultural Jihad. 90p. (In Persian)
2.Amiri Larijani, B., Sarvestani, Z.T., Nematzadeh, G., Manschadi, A.M., and Amiri, E. 2011. Simulating phenology, growth and yield of transplanted rice at different seedling ages in northern Iran using ORYZA2000. Rice Sci.18: 4. 321-334. 3.Amiri Larijani, B., Tahmasebi, S.Z., and Nematzade, G.A. 2013. Simulation of leaf area index, biomass and grain yield of rice cultivars at different seedling ages using ORYZA2000 model. Seed and plant production. 29: 3. 283-302.
4.Amiri, E. 2008. Evaluation of the rice growth model ORYZA2000 underwater managements. Asian J. Plant Sci.7: 3. 291-297.
5.Amiri, E. 2011. Simulation of rice growth and development under irrigation constraints. Biology science. 5: 4. 1-13. (In Persian).
6.Amiri, E., and Rezaei, M. 2010. Evaluation of water–nitrogen schemes for rice in Iran, using ORYZA2000 model. Commun. Soil Sci. Plan. 41: 20. 2459-2477.
7.Amiri, E., Razavipour, T., and Bannayan, M. 2011a. Evaluation of yield and water productivity in rice under irrigation management and plant density with use ORYZA2000 model. Crop production. 4: 3. 1-19. (In Persian) 8.Amiri, E., Razavipour, T., Farid, A., and Bannayan, M. 2011b. Effects of crop density and irrigation management on water productivity of rice production in Northern Iran: Field and Modeling Approach. Commun. Soil Sci. Plan.42: 17. 2085-2099.
9.Amiri, E., Rezaei, M., Rezaei, E.E., and Bannayan, M. 2014. Evaluation ofCeres-Rice, Aquacrop and Oryza2000 models in simulation of rice yield response to different irrigation and nitrogen management strategies. J. Plant Nutr. 37: 11. 1749-1769.
10.Bouman, B.A.M., Kropff, M.J., Tuong, T.P., Wopereis M.C.S., Ten Berge, H.F.M., and Van Laar, H.H. 2001. ORYZA2000: modeling lowland rice. International Rice Research Institute, Los Banos. 245p.
11.Bouman, B.A.M., and Van Laar, H.H. 2006. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric, Syst. 87: 3. 249-273.
12.Brar, S.K., Mahal, S.S., Brar, A.S., Vashist, K.K., Sharma, N., and Buttar, G.S. 2012. Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India. Agr. Water manage. 115: 217-222.
13.Cao, B., Hua, S., Ma, Y., Li, B.,and Sun, C. 2017. Evaluation of ORYZA2000 for Simulating Rice Growth of Different Genotypes at Two Latitudes. Agron, J. 109: 6. 2613-2629.
14.Chahal, G.B.S., Sood, A., Jalota,S.K., Choudhury, B.U., and Sharma, P.K. 2007. Yield, evapotranspirationand water productivity of rice–wheat system in Punjab (India) as influenced by transplanting date of rice and weather parameters. Agr. Water Manage.88: 1-3. 14-22.
15.Drenth, H., ten Berge, F.F.M., and Riethoven, J.J.M. 1994. ORYZA simulation modules for potential and nitrogen limited rice production SARP Research Proceedings. Wageningen, the Netherlands. 223p.
16.FAO. 2016. Food and Agricultural Organization of the United Nations (sited in: http://www.fao.org/ index_ en.htm/, 11/4/2018.
17.Jabran, K., Ullah, E., Hussain, M., Farooq, M., Haider, N., and Chauhan, B.S. 2015. Water saving, water productivity and yield outputs of fine-grain rice cultivars under conventional and water-saving rice production systems. Exp, Agr. 51: 4. 567-581.
18.Lampayan, R.M., Samoy-Pascual, K.C., Sibayan, E.B., Ella, V.B., Jayag, O.P., Cabangon, R.J., and Bouman, B.A.M. 2015. Effects of alternate wetting and drying (AWD) threshold level and plant seedling age on crop performance, water input, and water productivity of transplanted rice in Central Luzon, Philippines. Paddy and water Environ. 13: 3. 215-227.
19.Mahajan, G., Bharaj, T.S., and Timsina, J. 2009. Yield and water productivity of rice as affected by time of transplanting in Punjab, India. Agr. Water Manage. 96: 3. 525-532.
20.Majumder, D., and Das, L. 2018. Simulating the yield attributes of Boro rice under nitrogen and irrigation management at Mohanpur, West Bengal using ORYZA2000. J. Agrometeorol. 20: 1. 72-74.
21.Pang, G.B., Li, Y., Xu, Z.H., and Gao, H.Z. 2014. Calibration and Evaluation of ORYZA2000 under Water and Nitrogen managements. In Applied Mechanics and Materials. 641: 246-250.
22.Pazoki, A.R., Karimi Nejad, M., and Foladi Toroghi, A.R. 2010. Effect of planting dates on yield of ecotypes of saffron (Crocus sativus L.) in Natanz region. Crop Physiology. 2: 8. 3-12. (In Persian) 23.Rinaldi, M., Losavio, N., and Flagella, Z. 2003. Evaluation of OIL CROP-SUN model for sun flower in southern Italy. Agric. Sys. 78: 17-30.
24.Sailaja, B., Voleti, S.R., Subrahmanyam, D., Nathawat, M.S., and Rao, N.H. 2013. Validation of Oryza2000 model under combined nitrogen and water limited situations. Ind. J. Plant Physiol. 18: 1. 31-40.
25.Singh, M.C., Jain, A.K., and Jalota, S.K. 2017. Impact of Transplanting Date and Irrigation Scheduling on Water Balance, Water Productivity and Soil Moisture Movement. J. Agric. Eng. 54: 1. 28-32.
26.Singh, R., Van Dam, J.C., and Feddes, R.A. 2006. Water productivity analysis of irrigated crops in Sirsa district, India. Agr. Water Manage. 82: 253-278.
27.Soltani, A., Rahimzadeh Khoei, F., Ghassemi-Golezani, and Moghaddam, M. 1999. Cicer: A computerized model for simulating chickpea growthand yield. Agric. Sci. 9: 3. 89-106.(In Persian)
28.Soundharajan, B., and Sudheer,K.P. 2013. Sensitivity analysis andauto-calibration of ORYZA2000 using simulation-optimization framework. Pady Water Environ. 11: 1-4. 59-71. 29.Tari, D.B., Amiri, E., and Daneshian, J. 2017. Simulating the Impact of Nitrogen Management on Rice Yield and Nitrogen Uptake in Irrigated Lowland by ORYZA2000 Model. Common. Soil Sci. Plan. 48: 2. 201-213.
30.Van Oort, P.A.J., Balde, A., Diagne, M., Dingkuhn, M., Manneh, B., Muller, B., ... and Stuerz, S. 2016. Intensification of an irrigated rice system in Senegal: Crop rotations, climate risks, sowing dates and varietal adaptation options. Eur. J. Agron. 80: 168-181.
31.Wang, W., Ding, Y., Shao, Q., Xu, J., Jiao, X., Luo, Y., and Yu, Z. 2017. Bayesian multi-model projection of irrigation requirement and water use efficiency in three typical rice plantation region of China based on CMIP5. Agr. Forest Meteorol. 232: 89-105.
32.Wang, X., Lu, W., Jun Xu, Y., Zhang, G., Qu, W., and Cheng, W. 2016. The positive impacts of irrigation schedules on rice yield and water consumption: synergies in Jilin Province, Northeast China. Int. J. Agr. Sustain. 14: 1. 1-12.
33.Wopereis, M.C.S., Bouman, B.A.M., Tuong, T.P., ten Berge, H.F.M.,and Kropff, M.J. 1996. ORYZA W: rice growth model for irrigated and rain fed environments. SARP Research proceeding. Wageningen. The Netherlands. 164p. 34.Wopereis, M.C.S. 1993. Quantifying the impact of soil and climate variability on rainfed rice production. PhD thesis. Wageningen (Netherlands): Wageningen Agricultural University. 188p.
35.Xue, C.Y., Yang, X.G., Bouman, B.A.M., Deng, W., Zhang, Q.P., Yan, W.X., Zhang, T., Rouzi, A., and Wang, H. 2008. Optimizing yield, water requirements, and water productivity of aerobic rice for the North China Plain. Irrigation Sci. 26: 6. 459-474.
36.Zhang, S., Tao, F., and Zhang, Z. 2017. Uncertainty from model structure is larger than that from model parameters in simulating rice phenology in China. Eur. J. Agron. 87: 30-39.
37.Zolfagari, H., Farhadi, B., and Rahimi. H. 2016. Climatic Potentials in Iran for Soybean Cultivation Geogr. Plann. 20: 56. 89-105. (In Persian). | ||
آمار تعداد مشاهده مقاله: 587 تعداد دریافت فایل اصل مقاله: 295 |