
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,491 |
تعداد مشاهده مقاله | 8,612,777 |
تعداد دریافت فایل اصل مقاله | 8,201,781 |
کارایی همزمان گیاهپالایی و زیستپالایی در حذف نفت خام از خاک | ||
مجله پژوهشهای حفاظت آب و خاک | ||
دوره 27، شماره 2، خرداد و تیر 1399، صفحه 25-45 اصل مقاله (837.62 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2019.16529.3181 | ||
نویسندگان | ||
هادی کوهکن* 1؛ احمد گلچین2؛ محمدصدیق مرتضوی3؛ فاطمه شهریاری4؛ رقیه همتی4 | ||
1علوم خاک، کشاورزی، دانشگاه زنجان، زنجان، ایزان | ||
2استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران | ||
3پژوهشکده اکولوژی خلیج فارس و دریای عمان، هرمزگان، بندرعباس، ایران | ||
4گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران | ||
چکیده | ||
سابقه و هدف: فرآوردههای نفتی از پرمصرفترین مواد شیمیایی در دنیای مدرن امروز محسوب میشوند. هیدروکربنهای نفتی به یک معضل جهانی برای محیط زیست تبدیل شده است. این ترکیبات در محیط به شدت مقاوم هستند و برای سلامتی انسان مضر هستند. کاربرد فرایند اصلاح زیستی برای حذف هیدروکربنهای آروماتیک چند حلقهای از خاکهای آلوده یکی از گزینههای اقتصادی و مطلوب میباشد. پس هدف از این آزمایش بررسی درصد حذف آلودگی هیدروکربنی خاکهای آلوده به مواد هیدروکربنی (نفت خام) توسط کشت گیاهان سورگوم، جو و برموداگراس با و بدون تلقیح خاک با باکتریهای سودوموناس پوتیدا و آزوسپریلیوم براسیلنس بود. مواد و روشها: در این آزمایش کارایی همزمان گیاهپالایی و زیستپالایی در حذف نفت خام از خاک مورد بررسی قرار گرفت. برای این منظور، یک آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار به اجرا در آمد. فاکتورها شامل سه سطح آلودگی خاک به نفت (صفر، 4 و 8 درصد وزنی)، چهار تیمار گیاهی (بدون گیاه، برموداگراس (Cynodon dactylon)، سورگوم (bicolor Sorghum) و جو (Hordeum vulgare)) و سه تیمار باکتری (بدون باکتری، سودوموناس پوتیدا و آزوسپریلیوم براسیلنس) بودند. برای انجام آزمایش نمونههای پنج کیلویی خاک با مقادیر مختلف نفت خام آلوده شدند و در گلدانهای پلاستیکی ریخته شدند. پس از گذشت شش هفته و به تعادل رسیدن خاکهای آلوده شده، این خاکها با باکتریهای سودوموناس پوتیدا و آزوسپریلیوم براسیلنس تلقیح شده و سپس در خاکهای آلوده تلقیح شده با باکتری و تلقیح نشده سه گونه گیاهی گرامینه کاشته شدند و90 روز پس از کاشت گیاهان برداشت شدند. یافتهها: نتایج نشان داد که اثرات متقابل تمام تیمارها بر درصد حذف نفت خام خاک در سطح احتمال یک درصد معنیدار گردیدند. درصد حذف نفت خام با کشت گیاه بهتنهایی، تلقیح باکتری بهتنهایی و کاربرد توأم گیاه و باکتری بهطور معنی-داری نسبت به شاهد افزایش یافت. کاشت گیاه نسبت به تلقیح خاک با باکتری در کاهش غلظت مواد نفتی مؤثرتر بود و کارکرد باکتریها را بهطور معنیدار افزایش داد. بهطوریکه بین تیمارهای گیاه بهتنهایی، تلقیح باکتری بهتنهایی و گیاه+باکتری تفاوت معنیداری از این لحاظ مشاهده شد. بیشترین درصد حذف در تیمار کاربرد توأم گیاه و تلقیح باکتری مشاهده شد. در هر تیمار تلقیح خاک با باکتری، با افزایش سطوح آلودگی نفتی وزن خشک گیاهان کاهش یافت. اما در هر سطح از آلودگی نفتی، با تلقیح خاک با باکتری وزن خشک بخش هوایی افزایش یافت. تلقیح خاک با باکتریها با حذف مواد آلاینده باعث افزایش وزن اندامهای هوایی گردید. با افزایش سطح آلودگی غلظت کلروفیل برگ بهطور معنیداری کاهش یافت. ولی با تلقیح خاک با باکتری و کاهش اثرات منفی آلودگی نفتی و فراهمی نیتروژن برای گیاه غلظت کلروفیل در برگ تازه گیاهان افزایش یافت. با افزایش سطوح آلودگی نفتی میانگین غلظت پرولین در برگ تازه گیاهان بطور معنیداری نسبت به شاهد افزایش یافت و بالاترین غلظت آن (در هر گیاه) در سطح 8 درصد وزنی نفت خام بهدست آمد. تلقیح خاک با باکتری در خاکهای آلوده و غیر آلوده میزان پرولین در برگ گیاهان را افزایش داد. در هر سطح از آلودگی، با تلقیح خاک با باکتری، غلظت پرولین برگ گیاهان افزایش داشت و بالاترین غلظت پرولین در تیمار حاوی بالاترین سطح آلودگی نفتی (8 درصد وزنی) و تلقیح با باکتری سودوموناس پوتیدا اندازهگیری شد. نتیجهگیری: استقرار گیاه به همراه ریزجانداران میتواند به عنوان جزء کلیدی استراتژی حذف هیدروکربنهای نفتی در نظر گرفته شود. ازاینرو، این گونههای باکتری و گیاه را میتوان برای زیست پالایی خاکهای آلوده به نفت خام مورد استفاده قرار داد. | ||
کلیدواژهها | ||
آلودگی نفت خام؛ پرولین؛ زیستپالایی؛ کلروفیل؛ گیاهپالایی | ||
مراجع | ||
Carbonate. P 1379-1396, In: C.A. Black et al. (ed), Methods of soil analysis, Part 2, American Society of Agronmy, Madison, WI. 1569p.
2.Andria, V., Reichenauer, T.G., and Sessitsch, A. 2009. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environmental Pollution. 157: 3347-3350.
3.Arnon, D.I. 1956. Photosynthesis by isolated chloroplast. IV. General concept and comparison of three photochemical reactions. Biochimica Biophysica Acta. 20: 449-461.
4.Bacilio, M., Rodrguez, H., Moreno, M., Hernandez, J.P., and Bashan, Y. 2004. Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biology and Fertility Soils. 40: 188-193. 5.Barrutia, O., Garbisu, C., Epelde, L., Sampedro, M.C., Goicolea, M.A., and Becerril, J.M. 2011. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Science of the Total Environment. 409: 4087-4093.
6.Basumatary, B., Saikia, R., Bordoloi, S., Das, H.C., and Sarma, H.P. 2012. Assessment of potential plant species for phytoremediation of hydrocarbon contaminated areas of upper Assam, India. J. Chem. Technol. Biotechnol.87: 1329-1334.
7.Bates, L.S., Walden, R.P., and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil.39: 205-207.
8.Besharati, H. 2015. Microbial Remediation of Petroleum Contaminated Soils and the Role of Rhizosphere in Microorganisms Efficiency. Iran. J. Soil Res. 3: 573-584. (In Persian)
9.Beskoski, V.P., Gojgic-Cvijovic, G., Milic, J., Ilic, M., Miletic, S., and Solevic, T. 2011. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)-a field experiment. Chemosphere. 83: 34-40.
10.Bouyoucos, C.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J. 54: 464-465.
11.Bremner, J.M. 1965. Total nitrogen.P 1148-1158, In: C.A. Black et al. (eds), Methods of soil analysis. Part 2, American Socie ty of Agronomy. Mandison, WI. 1569p.
12.Chapman, H.D. 1965. Cation exchange capacity. P 891-901, In: C.A. Blacket al. (eds), Method of soil analysis. Part 2, American Society of Agronomy. Madison, WI. 1569p.
13.Chookhampaeng, S. 2011. The effect of salt stress on growth, chlorophyll content proline content and antioxidative enzymes of pepper (Capsicum annuum L.) seedling. Europ. J. Sci. Res. 49: 103-109. 14.Christopher, S., Hein, P., Marsden, J., and Shurleff, A.S. 1988. Evaluation of methods 3540 (soxhlet) and 3550 (Sonication) for evaluation of appendix IX analyses from solid samples. S-CUBED, Report for EPA contract 68- 03-33-75, work assignment No. 03, Document No. SSS-R-88-9436. 17p. 15.Dar, M.I., Naikoo, M.I., Rehman, F., Naushin, F., Khan, F.A., Iqbal, N., Nazar, R., and Khan, N.A. 2016. Proline accumulation in plants: roles in stress tolerance and plant development. In: Iqbal N, Nazar R, Khan NA, editors. Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, Pp: 155-66.
16.Gusain, Y.S., Singh, U.S., andSharma, A.K. 2015. Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afric. J. Biotechnol. 14: 764-773.
17.Hemke, P.H., and Spark, D.L. 1996. Potassium. P 551-574. In: D.L., Sparks et al. (Eds.). Method of soil analysis, part 3. Published by: Soil Science Societyof America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA. 1309p.
18.Henrique, F.S., Carmo, F.L., Paes, J.E.S., Rosado, A.S., and Peixoto, R.S. 2011. Bioremediation of Mangroves Impacted by Petroleum. Water, Air ans Soil Pollution. 216: 329-350.
19.Hewedy, A.M. 1999. Influence of single and multi bacterial fertilizer on the growth and fruit yield of tomato. Egypt J. Appl. Sci. 14: 508-523.
20.Huang, X.D., Alawi, Y.E., Penrose, D.M., Glick, B.R., and Greenberg,B.M. 2004. A multi process phytoremediation system for removal of polycyclic aromatic hydrocarbonsfrom contaminated soil. Environmental Pollution. 130: 465-476.
21.Hutchinson, S.L., Banks, M.K., and Schwab, A.P. 2001. Bioremediation and Biodegradation. Phytoremediation of aged petroleum sludge: Effect of inorganic fertilizer. Environmental Quality. 30: 395-403.
22.Jing, W., Zhongzhi, Z., Youming, S., Wei, H., Feng, H., and Hongguang, S. 2008. Phytoremediation of petroleum polluted soil. Petroleum Science and technology. 5: 167-171.
23.Kandowangko, N., Suryatmana, G., Nurlaeny, N., and Simanungkalit, R. 2009. Proline and abscisic acid content in droughted corn plant inoculatedwith Azospirillum sp. and arbuscular mycorrhizae fungi. Hayati J. Biosci.16: 15-20.
24.Khan, M.S., Zaidi, A., Wani, P.A., and Oves, M. 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminatedsoils. Environmental Chemistry Letters. 7: 1-19. 25.Khosravinodeh, M., Abbaspour, A., Ebrahimi, S.S., and Asghari, H.R. 2013. Phytoremediation of a fuel oil-contaminated soil using alfalfa and grass with pseudomonas putida bacterium. J. Water Soil Cons. 20: 219-234.
26.Lee, K., and Gibson, D.T. 1996.Toluene and ethyl benzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. Strain NCIB 9816-4. Applied Environmental Microbiology. 62: 3101-3106.
27.Levitt, J. 1980. Salt and ion stresses response of plant to environmental stresses. Academic press. 2: 365-488.
28.Li, J.H., Gao, Y., Wu, S.C., Cheung, K.C., Wang, X.R., and Wong, M.H. 2008. Physiological and biochemical responses of rice (Oryza Sativa L.) to Phenanthrene and Pyrene. Inter. J. Phytoremed. 10: 106-118.
29.Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Amer. J. 42: 421-428.
30.Lu, M., Zhang, Z., Sun, S., Wei, X., Wang, Q., and Su, Y. 2009. The use of goosegrass (Eleusine indica) to remediate soil contaminated with petroleum. Water, Air and Soil Pollution. 29: 181-189.
31.Ma, H., Wang, A., Zhang, M., Li, H., Du, S., Bai, L., Chen, S., and Zhong, M. 2018. Compared the physiological response of two petroleum tolerant-contrasting plants to petroleum stress. Inter. J. Phytoremed. 20: 1043-1048.
32.Media, V.F., Maestri, E., Marmiroli, M., Dietz, A.C., and Mc Cutcheon, S.C. 2003. Plant tolerances to contaminants. P 189-233, In: S.C., Mc Catcheon,J.L., Schnoor (eds). Phytoremediation, transformation and control of contaminants, Wiley- Interscience. 1024p.
33.Merkl, N., Schultze-Kraft, R., and Infante, C. 2004. Phytoremediation in the tropics-the effect of crude oil on the growth of tropical plants. Bioremed. J. 8: 177-184.
34.Minai-Tehrani, D., Herfatmanesh, A., Azari-Dehkordi, F., and Minooi, S. 2006. Effect of salinity on biodegradation of aliphatic fractions of crude oil in soil. Pak. J. Biol. Sci.9: 1531-1535.
35.Mishra, A., and Nautiyal, C. 2009. Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuelspikedsoil amended with Trichoderma ressei using sole-carbon-source utilization profiles. World J. Microbiol. Biotechnol. 25: 1175-1180.
36.Mishra, S., Jyot, J., Kuhad, R.C., and Lal, B. 2001. In situ bioremediation potential of an oily- sludge-degrading bacterial consortium. Current Microbiology. 43: 328-335.
37.Moopam, P. 2010. Manaul of oceanographic observation and pollutant analyses methods. 3th ed., Kuwit, 321p.
38.Olsen, S.R., Cole, C.V., Watanabe, F.S., and Dean, L.A. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA. Circ. 939. U.S. Gover. Prin. Office, Washington, DC, U. S. A.
39.Olukunle, O.F., and Oyegoke, T.S. 2016. Biodegradation of crude-oil by fungi Isolated from Cow Dung contaminated soils. Niger. J. Biotechnol. 31: 46-58.
40.Palmroth, M.R.T., Pichtel, J., and Puhakka, J.A. 2002. Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresource Technology.84: 221-28.
41.Peng, S., Zhou, Q., Cai, Z., and Zhang, Z. 2009. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment.J. Hazard. Mater. 168: 1490-1496.
42.Peretiemo-Clarke, B.O., and Achuba, F.I. 2007. Phytochemical effect of petroleum on peanut (Arachis hypogea) seedlings. J. Plant Pathol. 6: 179-182.
43.Radwan, S.S. 2009. Phytoremediatiom for oily desert soils. P 289-298. In: Singh, A., Kuhad, R.C., Ward,O.P. (eds.). Advanced in Applied Bioremediation. Springer-Verlag Berlin Heidelberg. 361p.
44.Robinson, S.L., Novak, J.T., Widdowson, M.A., Crosswell, S.B., and Fetterolf, G.J. 2003. Field and laboratory evaluation of the impact of tall fescue on polyaromatic hydrocarbon degradation in an aged creosote-contaminated surface soil. J. Environ. Engin. 129: 232-240.
45.Sasani, M., Khoramnejadian, S.H.,and Safari, R. 2016. Evaluation of different parameters on Anthracene biodegradation by Bacillus Spp isolated from Babolrood River in Mazandaran province. J. Water Soil Cons.22: 2019-231.
46.Schnoor, J. 1997. Phytoremediation. The University of Iowa, Department of Civil and Environmental Engineering, Center for Global and Regional Environmental Research, Iowa. Technology Evaluation Report, TE-98-01. 30p.
47.Shimp, J.F., Tracy, J.C., Davis, L.C., Lee, E., Huang, W., Erickson, L.E., and Schnoor, J.L. 1993. Beneficial effectsof plants in the remediation of soiland groundwater contaminated with organic pollutants. Critical Reviews in Environmental Science and Technology 23: 41-77.
48.Walkley, A., and Black, T.A. 1934. An examination of the deligaref method for determination organic matter and a propose modification of the chromic acid titration method. Soil Science. 37: 29-38. 49.White, P.M., Wolf, D.C., Thoma,G.J., and Reynolds, C.M. 2006. Phytoremediation of alklated polycyclic aromatic hydrocarbons in a crude oilcontaminated soil. Water, Air and Soil Pollution. 169: 207-220.
50.Wilts, C.C., Rooney, W.L., Chen, Z., Schwab, A.P., and Banks, M.K. 1998. Greenhouse evaluation of agronomic and crude oil phytoremediation potential among alfalfa genotypes. J. Environ. Qual. 27: 169-73.
51.Wu, M., Dick, W.A., Li, W., Wang, X., Yang, Q., Wang, T., Xu, L., Zhang, M., and Chen, L. 2016. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. International Biodeterioration and Biodegradation. 107: 158-164.
52.Yuan, S.Y., Chang, J.S., Yen, J.H., and Chang, B.V. 2001. Biodegradation of phenanthrene in River sediment. Chemosphere. 43: 273-278.
53.Zaki, M.S., Mohammad, M.N. Authman M.M.N., and Abbas, H.H.H.2015. Bioremediation of petroleum contaminants in aquatic environments. Life Sci. J. 12: 127-139. | ||
آمار تعداد مشاهده مقاله: 818 تعداد دریافت فایل اصل مقاله: 604 |