
تعداد نشریات | 13 |
تعداد شمارهها | 626 |
تعداد مقالات | 6,517 |
تعداد مشاهده مقاله | 8,746,507 |
تعداد دریافت فایل اصل مقاله | 8,317,314 |
پایداری اکسایشی روغن ارده کنجد غنی شده با اسانس بادرنجبویه در دمای بالا و طی دوره ی نگهداری | ||
نشریه فرآوری و نگهداری مواد غذایی | ||
دوره 13، شماره 2، تیر 1400، صفحه 33-46 اصل مقاله (770.38 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejfpp.2021.17724.1607 | ||
نویسندگان | ||
غلامحسین پورقنبری* 1؛ علی صحرایی اردکانی2؛ آیدا ایرجی3 | ||
1گروه علوم درمانگاهی، دانشکده پیرادامپزشکی، دانشگاه اردکان، ایران | ||
2گروه بهداشت و کنترل کیفی مواد غذایی، دانشکده پیرادامپزشکی، دانشگاه اردکان، ایران | ||
3آزمایشگاه مرکزی تحقیقات، دانشگاه علوم پزشکی شیراز، فارس، ایران | ||
چکیده | ||
سابقه و هدف: روغنهای گیاهی از جمله روغن کنجد حاوی درصد بالایی از اسیدهای چرب غیر اشباع و مستعد اکسایش و تولید متابولیتهای بسیار سمی هستند. آنتیاکسیدانها موجب مهار یا تاخیر در روند اکسایش مواد غذایی از جمله چربیها میشوند. بطور معمول، آنتیاکسیدانهای سنتزی در صنایع غذایی استفاده میشوند، اما همواره در ارتباط با کیفیت و امنیت آنها مباحثی مطرح بوده است. از طرفی، کاربرد آنتیاکسیدانهای طبیعی با منشاء گیاهی رو به افزایش است. بادرنجبویه به عنوان یک گیاه دارویی، دارای ترکیبات مختلف با خواص متنوع از جمله خاصیت آنتیاکسیدانی بسیار قوی میباشد. این مطالعه به منظور بررسی اثر آنتیاکسیدانی غلظتهای مختلف اسانس بادرنجبویه در مقابل اکسایش روغن ارده کنجد در دمای 60 درجه سانتیگراد در طی زمان، انجام گرفت. مواد و روشها: برای محاسبهی ترکیبات اسانس بادرنجبویه از دستگاه کروماتوگرافی طیف سنج جرمی (GC-MS) استفاده شد. سپس، برای اندازهگیری ترکیبات فنلی اسانس، از آزمایش اندازهگیری محتوای کلی فنل (TPC) استفاده گردید. قدرت اسانس در مهار رادیکالهای آزاد با ارزیابی قدرت مهار رادیکالهای آزاد DPPH بررسی شد. همچنین، آزمون رنسمیت برای محاسبه زمان القاء (دورهی اکسایش کند) به کار گرفته شد. به منظور اندازهگیری اثر آنتیاکسیدانی اسانس بادرنجبویه، غلظتهای صفر، 500، 1000 و 2000 (میکروگرم اسانس بر هر میلیلیتر روغن ارده کنجد) و آنتیاکسیدان سنتزی TBHQ به عنوان گروه کنترل مثبت با غلظت 200 میکروگرم بر هر میلیلیتر به روغن ارده کنجد اضافه شد و عدد پراکسید (PV) و شاخص اسید تیوباربیتوریک (TBA) در گروههای مختلف در طی 5 مرحله در روزهای 1، 5، 15، 25 و 35 پس از اضافه کردن اسانس به روغن ارده، اندازهگیری گردید. یافتهها: تجزیه و تحلیل اسانس با GC/MS نشان داد که ترکیبات نرال و جرانیال دارای بالاترین غلظت هستند. گروههای دریافت کننده TBHQ و اسانس بادرنجبویه با غلضت 2000 PPM با 6/61 و 2/50 درصد، بالاترین ظرفیت مهار رادیکالهای آزاد DPPH را نسبت به گروه کنترل نشان دادند. شاخص دوره القاء (IP) در گروه حاوی TBHQ، 2000 و صفر PPM اسانس به ترتیب، 11، 4/9 و 2/6 ساعت محاسبه گردید. در انتهای مطالعه، عدد پراکسید متعلق به گروههای حاوی 2000 PPM اسانس و TBHQ به ترتیب، 1/14 و 4/13 (میلیاکیوالان بر کیلوگرم) و شاخص اسید تیوباربیتوریک در این گروهها به ترتیب، 5/1 و 1/1 (میکرومول بر گرم) مشاهده گردید. همچنین بین غلظت اسانس بادرنجبویه و میزان فعالیت آنتیاکسیدانی، رابطه مستقیمی مشاهده گردید و با گذشت زمان نگهداری، تمام این شاخصها نیز افزایش یافت (05/0>P). نتیجهگیری: یافتههای پژوهش حاضر نشان دادند که اسانس بادرنجبویه به عنوان منبع غنی از مواد آنتیاکسیدان از جمله نرال و جرانیال و غیره... موجب افزایش پایداری روغن کنجد در دماهای بالا و نگهداری در زمانهای طولانی میشود بهطوری که قدرت مهار اکسایش اسانس در غلظتهای بالا، 85-74% از قدرت مهار اکسایش ترکیب سنتزی بهدست آمد. بر همین اساس قادر است به عنوان جایگزینی مناسب برای آنتی اکسیدانهای مصنوعی مطرح شود. | ||
کلیدواژهها | ||
آنتیاکسیدان؛ اکسایش چربی؛ بادرنجبویه؛ روغن ارده کنجد | ||
مراجع | ||
1.Abbaszadegan, A., Sahebi, S., Gholami, A., Delroba, A., Kiani, A., Iraji, A., and Abbott, P.V. 2016. Time-dependent antibacterial effects of Aloe vera and Zataria multiflora plant essential oils compared to calcium hydroxide in teeth infected with Enterococcus faecalis. Journal of investigative and clinical dentistry, 7: 1. 93-101.
2.Caleja, C., Barros, L., Barreira, J.C., Ciric, A., Sokovic, M., Calhelha, R.C., and Ferreira, I.C. 2018. Suitability of lemon balm (Melissa officinalis L.) extract rich in rosmarinic acid as a potential enhancer of functional properties in cupcakes. Food chemistry, 250. 67-74.
3.Ebrahimzadeh, M.A., Pourmorad, F., and Hafezi, S. 2008. Antioxidant activities of Iranian corn silk. Turkish Journal of biology, 32: 1. 43-49.
4.Ehsani, A., Alizadeh, O., Hashemi, M., Afshari, A., and Aminzare, M. 2017. Phytochemical, antioxidant and antibacterial properties of Melissa officinalis and Dracocephalum moldavica essential oils. Veterinary Research Forum, 8: 3. 223-229.
5.Erdmann, M.E., Lautenschlaeger, R., Zeeb, B., Gibis, M., and Weiss, J. 2017. Effect of differently sized O/W emulsions loaded with rosemary extract on lipid oxidation in cooked emulsion-type sausages rich in n-3 fatty acids. LWT-Food Science and Technology, 79. 496-502.
6.Franco, J.M., Pugine, S.M.P., Scatoline, A.M., and de Melo, M.P. 2018. Antioxidant capacity of Melissa Officinalis L. on Biological Systems. Eclética Química Journal, 43: 3. 19-29.
7.Guillen-Sans, R., and Guzman-Chozas, M. 1998. The thiobarbituric acid (TBA) reaction in foods: a review. Critical reviews in food science and nutrition, 38: 4. 315-350.
8.Habibi, H., Ghahtan, N., and Eskandari, F. 2017. Chemical Composition and Antibacterial Effect of Medicinal Plants against Some Food-Borne Pathogen. Research in Molecular Medicine, 5: 2. 14-21.
9.Koksal, E., Bursal, E., Dikici, E., Tozoglu, F., and Gulcin, I. 2011. Antioxidant activity of Melissa officinalis leaves. Journal of Medicinal Plants Research, 5: 2. 217-222.
10.Mareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A., and Cerkal, R. 2017. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of cereal science, 73. 40-45.
11.Mateos, R., Uceda, M., Aguilera, M.P., Escuderos, M.E., and Maza, G.B. 2006. Relationship of Rancimat method values at varying temperatures for virgin olive oils. European Food Research and Technology, 223: 2. 246-252.
12.Meftahizade, H., Sargsyan, E., and Moradkhani, H. 2013. Investigation of antioxidant capacity of Melissa officinalis L. essential oils. Journal of Medicinal Plants Research, 4: 14. 1391-1395.
13.Mohdaly, A.A., Smetanska, I., Ramadan, M.F., Sarhan, M.A., and Mahmoud, A. 2011. Antioxidant potential of sesame (Sesamum indicum) cake extract in stabilization of sunflower and soybean oils. Industrial Crops and Products, 34: 1. 952-959.
14.Pavan, B., Dalpiaz, A., Marani, L., Beggiato, S., Ferraro, L., Canistro, D., and Comparone, A. 2018. Geraniol pharmacokinetics, bioavailability and its multiple effects on the liver antioxidant and xenobiotic-metabolizing enzymes. Frontiers in pharmacology, 9. 18. doi:10.3389/fphar.2018.00018
15.Pereira, R.P., Fachinetto, R., de Souza Prestes, A., Puntel, R.L., Da Silva, G.N.S., Heinzmann, B.M., and Morel, A.F. 2009. Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus. Neurochemical research, 34: 5. 973-983.
16.Prasad, N., Siddaramaiah, B., and Banu, M. 2015. Effect of antioxidant tertiary butyl hydroquinone on the thermal and oxidative stability of sesame oil (sesamum indicum) by ultrasonic studies. Journal of food science and technology, 52: 4. 2238-2246.
17.Prasad, S.N., and Muralidhara, M. 2017. Analysis of the antioxidant activity of geraniol employing various in-vitro models: relevance to neurodegeneration in diabetic neuropathy. Asian Journal of Pharmaceutical and Clinical Research, 10: 7. 101.
18.Rašković, A., Milanović, I., Pavlović, N., Ćebović, T., Vukmirović, S., and Mikov, M. 2014. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC complementary and alternative medicine, 14: 1. 225.
19.Saeb, K., Gholamrezaee, S., andAsadi, M. 2011. Variation of antioxidant activity of Melissa officinalis leaves extracts during the different stages of plant growth. Biomedical and Pharmacology Journal, 4: 2. 237-243.
20.Sui, X., and Zhou, W. 2014. Monte Carlo modelling of non-isothermal degradation of two cyanidin-based anthocyanins in aqueous system at high temperatures and its impact on antioxidant capacities. Food Chemistry 148. 342-350. doi:10.1016/j.foodchem. 2013.10.060.
21.Taghvaei, M., and Jafari, S.M. 2015. Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. Journal of food science and technology, 52: 3. 1272-1282.
22.Tawaha, K., Alali, F.Q., Gharaibeh, M., Mohammad, M., and El-Elimat, T. 2007. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food chemistry, 104: 4. 1372-1378.
23.Villalobos, M.C. 2015. Antioxidant activity and citral content of different tea preparations of the above-ground parts of lemongrass (Cymbopogon citratus Stapf.). Journal of Agricultural and Food Chemistry, 46: 3. 1111-1115.
24.Witte, V.C., Krause, G.F., and Bailey, M.E. 1970. A new extraction method for determining 2‐thiobarbituric acid values of pork and beef during storage. Journal of food Science, 35: 5. 582-585.
25.Yang, Y., Song, X., Sui, X., Qi, B., Wang, Z., Li, Y., and Jiang, L. 2016. Rosemary extract can be used as a synthetic antioxidant to improve vegetable oil oxidative stability. Industrial Crops and Products, 80: 141-147.
26.Yoshida, H., and Takagi, S. 1997. Effects of seed roasting temperature and time on the quality characteristics of sesame (Sesamum indicum) oil. Journal of the Science of Food and Agriculture, 75: 1. 19-26. | ||
آمار تعداد مشاهده مقاله: 469 تعداد دریافت فایل اصل مقاله: 312 |