
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,640,286 |
تعداد دریافت فایل اصل مقاله | 8,234,614 |
استخراج فیکوسیانین از جلبک اسپیرولینا پلاتنسیس و ارزیابی پایداری نانولیپوزومهای حامل رنگدانه در برابر شرایط محیطی | ||
مجله بهره برداری و پرورش آبزیان | ||
دوره 11، شماره 1، فروردین 1401، صفحه 18-30 اصل مقاله (786.9 K) | ||
نوع مقاله: مقاله کامل علمی - پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/japu.2021.19704.1620 | ||
نویسندگان | ||
مهین ریگی1؛ سید مهدی اجاق* 2؛ علیرضا عالیشاهی3؛ شیرین حسنی4 | ||
1دانشجوی دکتری فرآوری محصولات شیلاتی، دانشکده شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران. | ||
2نویسنده مسئول، دانشیار گروه فرآوری محصولات شیلاتی، دانشکده شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران. | ||
3دانشیار گروه فرآوری محصولات شیلاتی، دانشکده شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران. | ||
4دانشآموخته دکتری فرآوری محصولات شیلاتی، دانشکده شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران | ||
چکیده | ||
تکنیک درون پوشانی در نانوحاملهای لیپیدی میتواند روشی کارآمد برای برطرف نمودن محدودیتهای موجود در استفاده از رنگدانه فیکوسیانین مستخرج از ریزجلبک اسپیرولینا به دلیل طعم و بوی خاص، حساسیت بالای این ترکیبات و ایجاد رنگ نامطلوب در محصولات باشد. لذا، در مطالعۀ حاضر رنگدانۀ فیکوسانین از جلبک اسپیرولینا پلاتنسیس استخراج و غلظت آن مورد بررسی قرار گرفت. نانولیپوزومهای حاوی رنگدانه با پوشش کیتوزان (1%) و فاقد پوشش تهیه شد و خصوصیات فیزیکوشیمیایی، مورفولوژی و پایداری آن نسبت به شرایط مختلف محیطی (رطوبت، دما و نور) ارزیابی گردید. میانگین اندازه نانولیپوزومها و شاخص پراکندگی بهترتیب از محدودۀ 21/322 تا 31/426 نانومتر و 27/0 تا 28/0 در نانوحاملها متغیر بود. بالاترین مقادیر راندمان نانوپوشانی نانولیپوزوم حاوی فیکوسیانین (4/81 درصد) تحت شرایط بهینه در نانولیپوزوم با پوشش کیتوزان بهدستآمد. ارزیابی ثبات لیپوزوم ها در برابر نور، رطوبت نسبی و دماهای مختلف نگهداری طی زمان حاکی از افزایش پایداری فیکوسیانین محصور شده در حامل های لیپیدی بوده و کیتوزان به عنوان پوشش لیپوزوم، سبب افزایش ثبات و کنترل انتشار پایدار فیکوسیانین گردید. | ||
کلیدواژهها | ||
فیکوسیانین؛ نانولیپوزوم؛ مورفولوژی؛ پایداری؛ رطوبت نسبی | ||
مراجع | ||
Asbahani, A., Miladi, K., Badri, W., Sala, M., Aït Addi, E.H., Casabianca, H.,El Mousadik, A., Hartmann, D., Jilale, A., Renaud, F.N.R., and Elaissari, A. 2015. Essential oils: from extractionto encapsulation. Inter. J. Pharm.483: 1-2. 220-243.
Beheshtipour, H., Mortazavian, A.M., Mohammadi, R., Sohrabvandi, S., and Khosravi, K. 2013. Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. CRFSFS. 12: 144-154.
Belén García, A., Longo, E., and Bermejo, R. 2021. The application of a phycocyanin extract obtained from Arthrospira platensis as a blue natural colorant in beverages. J. Appl. Phycol. 33: 3059-3070.
Cortés-Camargo, S., Cruz-Olivares, J., Barragán-Huerta, B.E., Dublán-García, O., Román-Guerrero, A., and Pérez-Alonso, C. 2017. Microencapsulation by spray drying of lemon essential oil: Evaluation of mixtures of mesquite gum–nopal mucilage as new wall materials. J. Microencapsul. 4: 6. 395-407.
Daneshi, E.D.G., Navacchi, M.F.P., Takeuchi, K.P., Frata, M.T., and Carvalho, J.C.M. 2010. Application of Spirulina platensis in protein enrichment of manioc based bakery products. J. Biotechnol. 150: 310-311.
Dewi, E., Kurniasih, R., and Purnamayanti, L. 2018. Physical Properties of Spirulina Phycocyanin Microencapsulated with Maltodextrin and Carrageenan. Philippine J. Sci. 147: 2. 201-207.
Fathi, M., Varshosaz, J., Mohebbi, M., and Shahidi, F. 2013. Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carries for food fortification: preparation, characterization, and modeling. Food Bioprocess Technology. 6: 1464-1475.
Ghorbanzade, T., Jafari, M., Akhavan, S., and Hadavi, R. 2017. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry. 216: 146-152.
Gustiningtyas, A., Setyaningsih, I., Hardiningtyas, S.D., and Susila, A.A.R. 2020. Improvement stability of phycocyanin from Spirulina platensis encapsulated by water soluble chitosan nanoparticles. Earth and Environmental Science. 414: 01200.
Hadiyanto, H., Suzery, M., Majid, D., Setyawan, D., and Sutanto, H. 2017. Encapsulation of phycocyanin-alginate for high stability and antioxidant activity. Earth and Environmental Science 55.doi:10.1088/1755-1315/55/ 1/ 012030, 1-8.
Hasani, S.H., Ojagh, S.M., and Ghorbani, M. 2018. Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: Study on its physical and structural characteristics. Int. J. Biol. Macromol. 115: 143-151.
Hundre, S.Y., Karthik, P., and Anandharamakrishnan, C. 2015. Effect of whey protein isolate and beta cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying Method. Food Chemistry. 174: 1. 16-24.
İlter, I., Koç, M., Demirel, Z., Conk Dalay, M., and Kaymak Ertekin, F. 2021. Improving the Stability of Phycocyanin by Spray Dried Microencapsulation Phycocyanin Stability Improvement,45: 7. 1-23.
Kumar, D., Wattal Dhar, D., and Pabbi, S. 2014. Extraction and purification ofC-phycocyanin from Spirulina platensis (CCC540). Ind. J. Plant Physiol.19: 2. 184-188.
Mary Leema, J.T., Kirubagaran, R., Vinithkumar, N.V., and Dheenan, P.S. 2010. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technology. 101: 9221-9227.
Page, D.T., and Cudmore, S. 2001. Innovations in oral gene delivery: Challenges and potentials. Drug Discovery Today. 6: 92-101.
Prabakaran, P., and Ravindran, A.D. 2013. Efficacy of different extraction methods of phycocyanin from Spirulina platensis. Inter. J. Res. Pharm. Life Sci.1: 1. 15-20.
Purnama, F.N.W., Agustini, T.W., and Kurniasih, RA. 2020. The effect of different temperature on the stability of phycocyanin on microcapsule Spirulina platensis. Earth and Environmental Science. 530: 012008.
Ramezanzade, L., Hosseini, S.F., and Nikkhah, M. 2018. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chemistry. 234: 220-229.
Rasti, B., Jinap, S., Mozafari, M.R.,and Yazid, A.M. 2012. Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari method. Food Chemistry. 135: 4. 2761-70.
Safari, R., Raftani Amiri, Z., and Esmaeilzadeh Kenari, R. 2020. Antioxidant and antibacterial activities of C-phycocyanin from common name Spirulina platensis. Iran. J. Fish. Sci.19: 4. 1911-1927.
Segura-Campos, M., Chel-Guerrero, L., Betancur-Ancona, D., and Hernandez-Escalante, V.M. 2011. Bioavailability of bioactive peptides. Food Reviews International. 27: 3. 213-226.
Silveira, S.T., Burkert, J.F.M., Costa, J.A.V., Burkert, C.A.V., and Kalil, S.J. 2007. Optimization of phycocyanin extraction from Spirulina platensisusing factorial design. Bioresource Technology. 98: 1629-1634.
Souzaa, J., Caldasa, A., Tohidib, SH., Molinac, J., Soutob, A., Fangueirob, R., and Zilleb, A. 2014. Properties and controlled release of chitosan microencapsulated limonene oil. Revista Brasileira de Farmacognosia. 24: 691-698.
Suzery, M., Hadiyanto, M., Setyawan, D., and Sutanto, H. 2017. Improvement of stability and antioxidant activities by using phycocyanin-chitosan encapsulation technique. Earth and Environmental Science, 55. doi:10.1088/1755-1315/55/ 1/012052. 1-7.
Tavakoli, F., Jahanban-Esfahlan, R., Seidi, KH., Jabbari, M., Behzadi, R., Pilehvar-Soltanahmadi, Y., and Zarghami, N. 2018. Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artificial Cells, Nanomedicine, and Biotechnology. 46: 52. 572-586.
Wu, Q., Liu, L., Miron, A., andKlímová, B. 2016. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology, DOI 10.1007/s00204-016-1744-5. 1-27.
Yan, M., Liu, B., Jia, O.X., and Qin, S. 2014. Preparation of phycocyanin microcapsules and its properties. Food and Bioproducts Processing. 92: 89-97.
Yeung, T.W., Uçok, E.F., Tiani, K.A., McClements, D.J., and Sela, D.A. 2016. Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Front. Microbial. 9: 145-148. | ||
آمار تعداد مشاهده مقاله: 1,216 تعداد دریافت فایل اصل مقاله: 638 |