
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,645,394 |
تعداد دریافت فایل اصل مقاله | 8,242,521 |
تأثیر کاربرد انواع زغال زیستی بر غلظت سیلیسیم و برخی عناصر غذایی ضروری خاک دارای بافت لوم رسی سیلتی. | ||
مجله مدیریت خاک و تولید پایدار | ||
دوره 12، شماره 2، تیر 1401، صفحه 87-105 اصل مقاله (1.38 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejsms.2022.19279.2028 | ||
نویسندگان | ||
مهرداد رنجبر1؛ فردین صادق زاده* 2؛ سید مصطفی عمادی3؛ مهدی قاجارسپانلو4؛ عبدالغفور احمدپور داشلی برون5 | ||
1دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
2گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. | ||
3گروه علوم و مهندسی خاک، دانشکده علوم زراعی ، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
4عضو هیات علمی دانشیار، گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
5دانش آموخته کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشگاه شهید چمران اهواز | ||
چکیده | ||
سابقه و هدف: بسیاری از خاکهای کشاورزی ایران بهعلت مدیریت نامناسب از جمله سیستم تککشتی و عدم رعایت تناوب زراعی، خروج کامل بقایای گیاهی از مزرعه و اقلیم خشک و نیمه خشک و عدم کاربرد کودها و اصلاحکنندههای آلی از نظر ماده آلی فقیر هستند. مصرف بیرویه کودهای شیمیایی به منظور افزایش میزان تولیدات کشاورزی بهویژه در بخش زراعی موجب بروز پیامدهای نامطلوب زیست محیطی میشود. امروزه با توسعه کشاورزی ارگانیک، استفاده از ترکیبات آلی برای کاهش استفاده از کودهای شیمیایی مورد توجه قرار گرفته است. نیشکر یک گیاه تجمع کننده سیلیسیم است و مدیریت ضعیف در کشت نیشکر میتواند سبب کاهش سیلیسیم قابل دسترس شود. یکی از مهمترین اصلاحکنندههای آلی برای بهبود ویژگیهای خاک، محتوای کربن و بهبود غلظت سیلیسیم قابل دسترس، زغال زیستی میباشد. هدف از این پژوهش بررسی تأثیر کاربرد انواع زغال زیستی بر غلظت سیلیسیم و برخی عناصر غذایی ضروری خاک دارای بافت لوم رسی سیلتی بود. مواد و روشها: بهمنظور بررسی تأثیر کاربرد انواع زغال زیستی بر غلظت سیلیسیم و برخی عناصر غذایی ضروری خاک دارای بافت لوم رسی سیلتی، طرح آزمایشی به صورت آزمایش فاکتوریل، با دو فاکتور زغال زیستی و کود شیمیایی در قالب طرح کاملا تصادفی با سه تکرار در آزمایشگاه شرکت کشت و صنعت نیشکر امام خمینی (ره) خوزستان اجرا شد. زغالهای زیستی مورد استفاده در این پژوهش باگاس نیشکر، پوسته برنج، کاه برنج، کاه گندم و چوب نراد بودند که گرماکافت آنها در کوره الکتریکی در دمای 300 درجه سانتیگراد و به مدت 3 ساعت گرماکافت انجام شد. تیمارهای آزمایش شامل شاهد (بدون مصرف زغال زیستی و کود شیمیایی)، زغال زیستی ، کودهای شیمیایی و زغال زیستی به همراه کودهای شیمیایی بود. زغالهای زیستی در سطح یک درصد وزنی به خاک اضافه شدند و تیمارها به مدت سه ماه در رطوبت ظرفیت زراعی انکوباسیون شدند. در پایان دوره انکوباسیون غلظت عناصر نیتروژن، فسفر، پتاسیم، سیلیسیم، آهن، منگنز، مس و روی اندازهگیری شد. یافتهها: نتایج آزمایش نشان داد که اثر تیمارها بر غلظت عناصر نیتروژن، فسفر، پتاسیم، سیلیسیم، آهن، منگنز، مس و روی در خاک معنیدار بود. تیمار زغال زیستی کاه برنج به همراه نیتروژن، فسفر و پتاسیم (RSB+NPK) بیشترین غلظت نیتروژن، فسفر و پتاسیم خاک را داشت. بیشترین غلظت سیلیسیم خاک مربوط به تیمارهای زغال زیستی کاه برنج به همراه نیتروژن، فسفر و پتاسیم (RSB+NPK)، زغال زیستی کاه برنج به همراه نیتروژن و فسفر (RSB+NP) و زغال زیستی کاه برنج به همراه فسفر (RSB+P) بود که بین این تیمارها و تیمارهای زغال زیستی کاه برنج به همراه فسفر و پتاسیم (RSB+PK) و زغال زیستی کاه برنج (RSB) اختلاف معنیداری وجود نداشت. نتیجهگیری: بهطور کلی نتایج این مطالعه نشان داد تیمارهای دارای زغال زیستی (زغال زیستی به تنهایی و یا همراه کود شیمیایی) نسبت به تیمارهای بدون زغال زیستی (شاهد و کود شیمیایی) تأثیر بیشتری در افزایش غلظت قابل دسترس عناصر غذایی در خاک داشتند. در بین زغالهای زیستی نیز، زغالهای زیستی کاه برنج، باگاس نیشکر و پوسته برنج در افزایش غلظت عناصر غذایی مؤثرتر بودند. بهطور کلی می-توان نتیجهگیری کرد بهدلیل اینکه زغال زیستی منبع غنی از این عناصر غذایی است و تأثیر مثبتی که بر ویژگیهای خاک دارد میتواند به عنوان یک عامل مؤثر در جهت بهبود حاصلخیزی خاک استفاده شود. | ||
کلیدواژهها | ||
گرماکافت؛ حاصلخیزی؛ کربن خاک؛ کود شیمیایی | ||
مراجع | ||
1.Kimetu, J., Lehmann, J., Ngoze, S., Mugendi, D., Kinyangi, J., Riha, S., Verchot, L., Recha, J., and Pell, A. 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems. 11: 726-739.
2.Wang, J., Xiong, Z., and Kuzyakov, Y. 2016. Biochar stability in soil: metal analysis of decomposition and priming effects. Gcb Bioenergy. 8: 3. 512-523.
3.Vaccari, F.P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., and Miglietta, F. 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy. 34: 4. 231-238.
4.Singh, B.P., Hatton, B.J., Singh, B., Cowie, A., and Kathuria, A. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality. 39: 1224-1235.
5.Masulili, A., and Utomo, W.H. 2010. Rice husk biochar for rice raised cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in west Kalimantan. Indonesia. Agricultural Science. 2: 1. 39-47.
6.Song, A.L., Ning, D.F., Fan, F.L., Li, Z.J., Provance-Bowley, M., and Liang, Y.C. 2015. The potential for carbon bio-sequestration in China's paddy rice (Oryza sativa L.) as impacted by slag-based silicate fertilizer. Scientific Report. 5: 1-12.
7.Houben, D., Sonnet, P., and Cornelis,J.T. 2013. Biochar from Miscanthus:a potential silicon fertilizer. Plant Soil.374: 871-882.
8.Abbas, T., Rizwan, M., Ali, S., Zia-ur-Rehman, M., Qayyum, M.F., Abbas, F., Hannan, F., Rinklebe, J., and Ok, Y.S. 2017. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety. 140: 37-47.
9.Xiao, X., Chen, B., and Zhu, L. 2014. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environmental Science & Technology. 48: 3411-3419.
10.Sadegh-Zadeh, F., Fallah Tolekolai, S., Bahmanyar, M.A., and Emadi, M. 2018. Application of biochar and compost for enhancement of rice (Oryza sativa L.) grain yield in calcareous sandy soil. Communications in Soil Science and Plant Analysis. 49: 5. 552-566.
11.Divband Hafshejani, L., Naseri, A.A., Hooshmand, A., Abbasi, F., and Sultani Mohammadi, A. 2017. Effect of Sugarcane Bagasse Biochar Application on Chemical Properties a Sandy Loam Soil. Journal of Irrigation Science and Engineering. 40: 1. 63-72. (In Persian)
12.Rasuli, F., Owliaie, H., Najafi-Ghiri, M., and Adhami, E. 2021. Effect of biochar on potassium fractions and plant-available P, Fe, Zn, Mn and Cu concentrations of calcareous soils. Arid Land Research and Management, pp. 1-26.
13.Laird, D.A., Fleming, P.D., Karlen, D.L., Wang, B., and Horton, R. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma. 158: 436-442.
14.Masto, R.E., Kumar, S., Rout, T.K., Sarkar, P., George, J., and Ram, L.C. 2013. Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena.111: 64-71.
15.Major, J., Rondon, M., Molina, D.,Riha, S.J., and Lehmann, J. 2013.Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil. 333: 1-2. 117-128.
16.Lehmann, J. 2007. Bio-energy in the black. Frontiers in Ecology and Environment. 5: 38-387.
17.Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. 2007. Agronomic values of green waste biochar as a soil amendment. Australian Journal of Soil Research. 45: 629-634.
18.Chan, K.Y., and Xu, Z. 2009.Biochar: Nutrient properties and their enhancement. In: Lehmann, J.and Joseph, S., Eds., Biochar for Environmental Management: Science and Technology. Earthscan. London.pp. 67-84.
19.Sohi, S.P., Krull, E., Lopez-Capel, E. and Bol, R. 2010. A review of biochar and its use and function in soil. P 47-82. In Advances in Agronomy. Publisher Elsevier Academic Press Inc., ISSN 0065-2213, San Diego, CA-92101-4495, USA.
20.Rondon, M.A., Lehmann, J., Ramírez, J., and Hurtado, M. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biology and Fertility of Soils. 43: 699-708.
21.Amonette, J.E., and Joseph, S. 2009. Characteristics of Biochar: Microchemical Properties. P 33-52. In: J. Lehmann, and S. Joseph, S., (eds.), Biochar for Environmental Management: Science and Technology. Earthscan. London. 22.D5142. 2009. Standard test methods for proximate analysis of the analysis sample of coal and coke by instrumental procedures. West Conshohocken, PA: American Society for Testing and Materials. 5p.
23.Olsen, S.R., and Sommers, L.E. 1982. Phosphorus. P 403-430. In Methods of Soil Analysis, A.L. Page, R.H. Miller, and D.R. Keeney, (eds.), Part 2, 2nd ed. USA: Am. Soc. Agron., Madison, WI.
24.Lindsay, W.L., and Norvell, W.A. 1978. Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Sciences Social American Journal. 42: 421-28. 25.Nelson, D.W., and Sommers, L.E. 1980. Total nitrogen analysis for soil and plant tissues. Journal Association Office Analysis Chemical. 63: 770-78.
26.Rahoads, J.D., Ingvabon, R.D., and Hatcher, D.D. 1970. Labortory determination Leacheable soil boron. Soil Science Socitey of America Journal. 34: 871-875.
27.Westeman, R.E.L. 1990. Soil testing and plant analysis. SSSA. Madison.pp. 534-578.
28.Haysom, M.B.C., and Chapman, L.S. 1975. Some aspects of the calcium silicate trials at Mackay, Proceedings of the Queensland Society of Sugar Cane Technology. 42: 117-22.
29.Steiner, C., Glaser, B., Teixeira, W.G., Lehmann, J., Blum, W.E.H., and Zech, W. 2008. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science. 171: 893-899.
30.Xia, H., Riaz, M., Zhang, M., Liu, B., El-Desouki, Z., and Jiang, C. 2020. Biochar increases nitrogen use efficiency of maize by relieving aluminum toxicity and improving soil quality in acidic soil, Ecotoxicology and Environmental Safety. 196: 110531.
31.Sujana, I.P., Lanya, I., Subadiyasa, I.N.N., and Suarna, I.W. 2014. The effect of dose biochar and organic matters on soil characteristic and corn plants growth on the land degraded by garment liquid waste. Journal of Biology. Agriculture and Healthcare.4: 5. 77-88.
32.Zhai, L., CaiJi, Z., Liu, J., Wang, H., Ren, T., Gai, X., and Liu, H. 2015. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology and Fertility of Soils, 51: 1. 113-122.
33.Manolikaki, I.I., Mangolis, A., and Diamadopoulos, E. 2016. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils Journal of Environmental Management. 181: 536-543.
34.Najafi-Ghiri, M. 2014. Effect of Different Biochars Application on Some Soil Properties and Nutrients Availability in a Calcareous Soil. Journal of Soil Research. 29: 3. 351-358. (In Persian)
35.Gaskin, J.W., Steiner, C., Harris, K., Das, K.C., and Bibens, B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the (American Society of Agricultural and Biological Engineers ISSN) ASABE. 51: 6. 2061-2069.
36.Novak, J.M., Busscher, J.W., Laird, D.L., Ahmedna, D.W., Watts, M.A., and Niandou, S. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science.174: 105-112.
37.Moradi, N., Rasouli-Sadaghiani, M.H., and Sepehr, E. 2017. Effect of biochar types and rates on some soil properties and nutrients availability in a calcareous soil. Journal of Water and Soil.31: 4. 1232-1246. (In Persian)
38.Karimi, A., Moezzi, A., Charm, M., and Enayati Zamir, N. 2020. Effect of sugarcane bagasse biochar on nutrient availability and biological characteristics in a calcareous soil. Applied Soil Research. 89: 1. 1-17. (In Persian) | ||
آمار تعداد مشاهده مقاله: 313 تعداد دریافت فایل اصل مقاله: 206 |