
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,620,796 |
تعداد دریافت فایل اصل مقاله | 8,210,950 |
بررسی فاکتور انتقال و تجمع زیستی کادمیم در ارقام مختلف گندم نان و دوروم دریک خاک آهکی آلوده | ||
مجله مدیریت خاک و تولید پایدار | ||
دوره 13، شماره 2، تیر 1402، صفحه 1-26 اصل مقاله (1.14 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejsms.2023.20521.2069 | ||
نویسندگان | ||
نرگس عابدین زاده1؛ امیر فتوت* 2؛ بصیر عطاردی3 | ||
1دانشجوی کارشناسیارشد گروه علوم خاک، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
2استاد گروه علوم خاک، دانشگاه فردوسی مشهد، مشهد، ایران | ||
3عضو هیئت علمی مرکز تحقیقات خاک و آب مشهد، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی | ||
چکیده | ||
سابقه و هدف: امروزه با افزایش فعالیتهای صنعتی و کشاورزی و در نتیجهی آن افزایش آلایندهها، خاک به عنوان یکی از اجزای مهم محیط زیست و دریافتکننده بسیاری از این تولیدات مورد توجه قرار میگیرد. همچنین با وجود ارتباط مستقیم میان خاک، گیاه و انسان، آلودگی در هر یک از این محیطها میتواند اثر متقابلی در محیط دیگر داشته باشد. نوعی از آلودگی در خاک، آلودگی فلزات سنگین است که از راههای مختلف، وارد چرخه غذایی انسان میشود. کادمیم فلزی است که در میان عناصر سنگین دارای اهمیت ویژهای است، زیرا این فلز توسط گیاهان به آسانی جذب و باعث سمیت میشود و تاثیر منفی آن برای گیاه، بیشتر از سایر فلزات سنگین میباشد. در همین راستا بررسی جذب و انتقال کادمیم در ارقام مختلف گندم، به منظور معرفی ارقامی که قابلیت جذب کمتری از این عنصر را دارند، ضروری به نظر میرسد. از اینرو، مطالعه حاضر با هدف مقایسه توانایی جذب کادمیم در چندین رقم مختلف گندم نان و دوروم تحت تاثیر کادمیم خاک انجام شد. مواد و روشها: این پژوهش به منظور مطالعه تأثیر سطوح کادمیم خاک (صفر و 10 میلیگرم بر کیلوگرم) بر غلظت این عنصر در ریشه و اندام هوایی چهار رقم گندم نان بهاره (Triticum aestivum) (سیروان، رخشان، طلایی و پارسی) و پنج رقم گندم دوروم بهاره (Triticum turgidum L. var.durum) (بهرنگ، هانا، آران، شبرنگ و ثنا)، به صورت فاکتوریل و در قالب طرح پایهی کاملاً تصادفی در سه تکرار در گلخانه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد انجام شد. به منظور تعیین غلظت کادمیم کل خاک، روش تیزاب سلطانی (8)؛ هضم با اسید کلریدریک و اسید نیتریک (نسبت 3 به 1)، استفاده شد. مقدار کادمیم اندام گیاهی نیز با روش هضم تر (نیتریک اسید و آب اکسیژنه) اندازهگیری گردید (30). شاخص ضریب تجمع زیستی برای اراقام هر دو گونه محاسبه شد. یافتهها: بر اساس نتایج، اثر آلودگی خاک بر غلظت کادمیم ریشه و اندام هوایی ارقام نان و ارقام دوروم از لحاظ آماری معنیدار بود (P<0/01). غلظت کادمیم ریشه در تمام ارقام از میزان کادمیم اندام هوایی بیشتر به دست آمد. در گونه نان، بیشترین و کمترین مقدار کادمیم اندام هوایی به ترتیب در ارقام سیروان و رخشان مشاهده شد. همچنین بیشترین و کمترین غلظت کادمیم ریشه در ارقام رخشان و طلایی به ترتیب محاسبه گردید. با توجه به اختلاف میزان کادمیم ریشه و اندام هوایی و شاخص ضریب تجمع زیستی میتوان رقم سیروان را زیادانباشتگر و رقم رخشان را کمانباشتگر به شمار آورد. در گونه دوروم، با توجه به اطلاعات به دست آمده، رقم ثنا دارای کمترین غلظت کادمیم اندام هوایی و رقم بهرنگ دارای بیشترین میزان کادمیم اندام هوایی بود. بیشترین و کمترین مقدار کادمیم ریشه به ترتیب به ارقام ثنا و هانا مربوط میشد. بنابر نتایج اختلاف کادمیم ریشه و اندام هوایی و شاخص ضریب تجمع زیستی، میتوان رقم ثنا و هانا را نیز کمانباشتگر و رقم بهرنگ را زیادانباشتگر در نظر گرفت. ارقام پارسی از گونه نان و شبرنگ از گونه دوروم در دو تیمار C و Cd10 دارای بیشترین زیست توده اندام هوایی بودند. بطور کلی گونه نان نسبت به گونه دوروم، مقدار بیشتری از این عنصر را در اندام هوایی و ریشه خود انباشت نمود. نتیجهگیری: به طور کلی غلظت کادمیم اندام گیاهی و ریشه ارقام دو گونه نان و دوروم تحت تاثیر کادمیم خاک قرار گرفت. با توجه به نتایج، هر رقم گندم، رفتار متفاوتی در جذب و انتقال کادمیم از خود نشان داد. بنابراین برای تعیین حدود مجاز آلودگی خاک و گیاه، بایستی با توجه به رقم گندم و خصوصیات خاک، تصمیمات اتخاذ شود. جهت انجام مطالعات مشابه، وجود ارقامی بعنوان شاخص و استاندارد الزامی میباشد. | ||
کلیدواژهها | ||
آلودگی خاک؛ کادمیم؛ گندم نان؛ گندم دوروم | ||
مراجع | ||
1.Smolders, E., & Mertens, J. (2013). P. 283-311. In: B. J. Alloway. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability, Chapter 10: Cadmium. Springer Dordrecht.
2.Fotovat, A. (2018). Heavy Metals in Soils. FerdowsiUniv of Mashhad, Press. 705p. [Translatedin in Persian]
3.Naidu, R., & Bolan, N. S. (2008). Contaminant chemistry in soils: Key concepts and bioavailability. P. 9-37. In: R. Naidu (ed). Chemical Bioavailability in Terrestrial Environment. Elsevier Science.
4.Loganathan, P., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2012). Cadmium Sorption and Desorption in Soils: A Review. Journal of Critical Reviews in Environmental Science and Technology, 42 (5), 489-533. DOI: 10.1080/10643389.2010.520234.
5.Rizwan, M., Ali, Sh., Abbas, T., Zia ur Rehman, M., Hannan, F., Keller, C. I., Al-Wabel, M., & Ok, Y. S. (2016). Cadmium minimization in wheat: A critical review. Journal of Ecotoxicology and Environmental Safety, 130, 43-53. http://dx.doi.org/10.1016/j.ecoenv.2016.04.001.
6.Jafarnejadi, A. R., Homaee, M., Sayyad, Gh. A., & Bybordi, M. (2011). Large Scale Spatial Variability of Accumulated Cadmium in the Wheat Farm Grains. Journal of Soil and Sediment Contamination, 20, 98-113. http://dx. doi.org/10.1080/15320383.2011.528472.
7.FAO. 2021. World cereal production, utilization, stocks, and trade all likely to contract in 2022/23. Rome.
8.Liu, W. X., Liu, J. W., Wu, M. Z., Li, Y., Zhao, Y., & Li, S. R. (2009). Accumulation and Translocation of Toxic Heavy Metals in Winter Wheat (Triticum aestivum L.) Growing in Agricultural Soil of Zhengzhou, China. Journal of Bull. Environ. Contam. Toxicol. 82, 343-347. DOI: 10.1007/s00128-008-9575-6.
9.Tavakoli, A., Golchin, A., & Abdollahi, S. (2020). Effect of cadmium on some growth indices and nutrients concentrations of different wheat cultivars. Journal of Soil Research, 34, 359-372. DOI: 10.22092/IJSR.2020. 342706.525. [In Persian]
10.Kheirabadi, H., Afyuni, M., Ayoubi, S., & Soffianian, A. (2016). Risk Assessment of Heavy Metals in Soils and Major Food Crops in the Province of Hamadan. Journal of Water and Soil Science, 19 (74), 27-38. DOI: 10.18869/ acadpub.jstnar.19.74.3. [In Persian]
11.National Standard of Iran, No. 12968. (2009). Institute of Standards and Industrial Research of Iran, Food & Feed Maximum limit of heavy metals. [In Persian]
12.Hasheminasab, K. S., Shahbazi, K., & Bazargan, K. (2021). Investigation of the concentration of heavy metals, lead and cadmium, and zinc concentration in the wheat produced in Iran. Journal of Env. Sci. Tech. 9 (23), 165-174. DOI: 10.30495/JEST.2022.48667.4877. [In Persian]
13.Buscaroli, A. (2017). An overview of indexes to evaluate terrestrial plants for phytoremediation purposes (Review). Journal of Ecological Indicators, 82, 367-380. DOI: 10.1016/ j.ecolind. 2017.07.003.
14.Hart, J. J., Welch, R. M., Norvell, W. A., & Kochian, L. V. (2006). Characterization of cadmium uptake, translocation, and storage in near-isogenic lines of durum wheat that differ in grain cadmium concentration. Journal of New Phytologist, 172, 261-271. DOI: 10.1111/ j.1469-8137.2006.01832.x.
15.Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which Hyperaccumulate metallic elements. A review of their distribution, ecology, and phytochemistry. Journal of Biorecovery. 1, 81-126. http://dx.doi.org/ 10.1080/ 01904168109362867.
16.Ivani, R., Mirseyed Hosseini, H., Savaghebi, Gh. R., & Skandary, M. (2007). The effect of sewage sludge on accumulation of heavy metals in soil and different plants. 2nd National Congress of Ecological Agriculture. Gorgan. https://civilica.com/doc/28162. [In Persian]
17.Afshari, A., Khademi, H., & Ayoubi, Sh. (2015). Risk assessment of Heavy Metals contamination in soils and selected crops in Zanjan urban and industrial regions. Journal of Water and Soil, 29 (1), 151-163. DOI: 10.22067/ JSW.V0I0.27750. [In Persian]
18.Lu, M., Cao, X., Pan, J., Li, T., Bilal Khan, M., Gurajala, H. K., He, Zh., & Yang, X. (2019). Identification of wheat (Triticum aestivum L.) genotypes for food safety on two different cadmium contaminated soils. Journal of Environmental Science and Pollution Research, 27 (8), 7943-7956. https:// doi.org/10.1007/s11356-019-07261-w.
19.Cai, K., & Song, Z. (2019). Bioconcentration, potential health risks, and a receptor prediction model of metal (loid)s in a particular agro-Ecological area. Journal of Appl. Sci. 9, 1-20. DOI: 10.3390/app9091902.
20.Beigi Harchegani, H., & Banitalebi, G. (2013). The effect of twenty-three years of surface irrigation with treated municipality wastewater on soil loadings, transfer to wheat and corn grains, and related health risks of some Heavy Metals. Journal of Water and Soil, 27 (3), 570-580. DOI: 10.22067/ JSW.V0I0.26085. [In Persian]
21.Wang, Sh., Wu, W., Liu, F., Liao, R., & Hu, Y. (2017). Accumulation of heavy metals in soil-crop systems: a review for wheat and corn. Journal of Environ. Sci. Pollut. Res. 24 (18), 15209-15225. DOI: 10.1007/s11356-017-8909-5.
22.Vergine, M., Aprile, A., Sabella, E., Genga, A., Siciliano, M., Rampino, P., Lenucci, M. S., Luvisi, A., & Bellis, L. D. (2017). Cadmium concentration in grains of durum wheat (Triticum turgidum L. subsp. durum). Journal of Agricultural and Food Chemistry, 65, 6240-6246. DOI: 10.1021/acs.jafc. 7b01946. 23.Cieslinski, G., Van Rees, K. C. J., Huang, P. M., Kozak, L. M., Rostad, H. P. W., & Knott, D. R. (1996). Cadmium uptake and bioaccumulation in selected cultivars of durum wheat and flax as affected by soil type. Journal of Plant and Soil, 182, 115-124. DOI: 10.1007/BF00011000.
24.Grant, C. A., Bailey, L. D., McLaughlin, M. J., & Singh, B. R. (1999). Management Factors which Influence Cadmium Concentrations in Crops: A Review. P. 151-198, In: M. J. McLaughlin, B. R. Singh (eds) Cadmium in Soils and Plants. Springer, Dordrecht.
25.Department of environment. (2021). Pollution standards of soil resources and its guidelines. [In Persian]
26.Rhoades, J. D., Chanduvi, F., & Lesch, S. M. (1999). Soil Salinity Assessment Methods and Interpretation of Electrical Conductivity Measurements, FAO Irrigation and Drainage Paper, No. 57, Rome, Italy, 152p.
27.Thomas, G. W. (1996). Soil pH and soil acidity. P. 475-490, In: D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston & M. E. Methods of Soil Analysis, Part 3: Chemical Methods. Soil Sciences Society of America and American Society of Agronomy, Madison.
28.Bouyoucos, C. J. (1962). Hydrometer method improved for making particle size analysis of soil. Journal of Agronomy, 54, 464-465. http://dx.doi. org/10.2134/agronj1962.00021962005400050028x.
29.Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-total, Methods of Soil Analysis. American Society of Agronomy. Book Series: Agronomy Monographs. 31, 595-624.
30.Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Journal of Soil Science, 37, 29-38. DOI: 10.1097/ 00010694-193401000-00003.
31.Chapman, H. D. (1965). Cation exchange capacity. P. 891-901, In: C.A. Black (ed.), Methods of Soil Analysis. American Society of Agronomy, Madison, Wisconsin.
32.Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. P. 4013-430, In: A. Klute (ed.), Methods of Soil Analysis. Part 1: chemical and biological properties. Soil Science Society of America, Madison, Wisconsin.
33.Loeppert, R. H., & Sparks, D. L. (1996). Carbonate and gypsum. P. 437-474, In: D. L. Sparks (ed.), Methods of Soil Analysis. Part 3: chemical methods. Soil Science Society of America, Madison, Wisconsin.
34.Alizadeh, A. (2006). The Relationship between Water and Soil and Plant. Imam Reza University, Mashhad, 470p. [In Persian]
35.Atarodi, B., Fotovat, A., Khorassani, R., Keshavarz, P., & Hammami, H. (2018). Interaction of selenium and cadmium in wheat at different salinities. Journal of Toxicological & Environmental Chemistry, 100 (3), 348-360. DOI: 10.1080/ 02772248.2018.1524472.
36.Berrow, M. L., & Stein, W. M. (1983). Extraction of Metals from Soils and Sewage sludge by Refluxing with Aqua Regia. Journal of Analyst. 108, 277-285. https://doi.org/10.1039/AN9830800277.
37.J. Benton Jones, Jr. (2001). Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, Boca Raton. Pp: 206.
38.Rezapour, S., Atashpaz, B., Siavash Moghaddam, S., Kalavrouziotis, I. K., & Damalas, C. A. (2019). Cadmium accumulation, translocation factor, and health risk potential in a wastewater-irrigated soil-wheat (Triticum aestivum L.) system. Journal of Chemosphere, 231, 579-587. DOI: 10.1016/j. chemosphere.2019.05.095.
39.Fontem Lum, A., Ngwa, E. S. A., Chikoye, D., & Suh, C. E. (2014). Phytoremediation Potential of Weeds in Heavy Metal Contaminated Soils of the Bassa Industrial Zone of Douala, Cameroon. International Journal of Phytoremediation, 16, 302-319. DOI: 10.1080/15226514.2013.773282.
40.Javad Zarin, I., Motesharezadeh, B., & Tafvizi, M. (2014). Evaluation of potassium and cadmium uptake in different wheat cultivars (Triticum aestivum L.) under cadmium stress. Journal of Environmental stresses in crop sciences. 9 (2), 195-204. https:// doi.org/10.22077/escs.2016.365. [In Persian]
41.Lu, M., Cao, X., Lin, Q., Hussain, B., Feng, Y., He, Zh., Kang, K. J., & Yang, X. (2021). Phyto availability, translocation, and soil thresholds derivation of cadmium for food safety through soil-wheat (Triticum aestivum L.) system. Journal of Environ. Sci. Pollut. Res. 28, 37716-37726. https:// doi.org/10.1007/s11356-021-13385-9.
42.Greger, M., & Lofstedt, M. (2004). Comparison of Uptake and Distribution of Cadmium in Different Cultivars of Bread and Durum Wheat. Journal of Crop Science, 44, 501-507. DOI: 10.2135/cropsci2004.5010.
43.Saremi Rad, B., Esfandiari, E.A., Shokrpour, M., Sofalian, O., Avanes, A., & Mousavi, S.B. 2013. Cadmium effects on some morphological and physiological parameters in wheat at seedling stage. Journal of Plant Research, 27, 1-11. DOR: 20.1001.1. 23832592.1393.27.1.1.9. [In Persian]
44.Shi, G. L., Li, D. J., Wang, Y. F., Liu, Ch. H., Hu, Zh. B., Lou, L. Q., Rengel, Z., & Ca, Q. Sh. (2019). Accumulation and distribution of arsenic and cadmium in winter wheat (Triticum aestivum L.) at different developmental stages. Journal of Science of the Total Environment, 667, 532-539. DOI: 10.1016/j.scitotenv.2019.02.394.
45.Harris, N. S., & Taylor, G. J. (2013). Cadmium uptake and partitioning in durum wheat during grain filling. Journal of Plant Biology. 13, 103. DOI: 10.1186/1471-2229-13-103.
46.Cieslinski, G., Van Rees, K. C. J., Szmigielska, A. M., & Huang, P. M. (1997). Low molecular-weight organic acids released from roots of durum wheat and flax into sterile nutrient solutions. Journal of Plant Nutr. 20, 753-764. https://doi.org/10.1080/ 01904169709365291.
47.Qin, Sh., Liu, H., Nie, Zh., Rengel, Z., Gao, W., Li, Ch., & Zhao, P. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Journal of Pedosphere. 30 (2), 168-180. DOI: 10.1016/S1002-0160(20)60002-9.
48.Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Journal of Plant Physiol, 17 (1), 21-34. DOI: 10.1590/ S1677-04202005000100003.
49.Page, V., & Feller, U. (2015). Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level. Journal of Agronomy, 5 (3), 447-463. DOI: 10.3390/ agronomy 5030447.
50.Herren, Th., & Feller, U. R. S. (1997). Transport of Cadmium via Xylem and Phloem in Maturing Wheat Shoots: Comparison with the Translocation of Zinc, Strontium, and Rubidium. Journal of Annals of Botany, 80, 623-628. DOI: 10.1006/anbo.1997.0492. 51.Yargholi, B. (2014). Investigation of Cd Uptake and Transfer in Different Parts of Wheat, Spinach, Cucumber, and Carrot Crops. Journal of Water and Wastewater, 26 (6), 107-114. [In Persian]
52.Adeniji, B. A., Budimir-Hussey, M. T., & Macfie, S. M. (2010). Production of organic acids and adsorption of Cd on roots of durum wheat (Triticum turgidum L. var. durum). Journal of Acta Physiol Plant, 32, 1063-1072. DOI: 10.1007/s11738-010-0498-6.
53.Ci, D., Jiang, D., Wollenweber, B., Dai, T., Jing, Q., & Cao, W. (2010a). Cadmium stress in wheat seedlngs: growth, cadmium accumulation and photosynthesis. Journal of Acta Physiol. Plant. 32, 365-373. https://doi.org/10. 1007/s11738-009-0414-0.
54.Khanboluki, G., Mirseyed Hosseini, H., & Motesharezadeh, B. (2016). Effect of elevated atmospheric CO2 on cadmium uptake by wheat and sorghum. Journal of Soil Management and Sustainable Production. 5 (4), 97-113. DOI: 10.1080/ 00103624.2018.1547388. [In Persian]
55.McLaughlin, M. J., Smolders, E., Degryse, F., & Rietra, R. (2011). Uptake of Metals from Soil into Vegetables. P. 325-367, In: Swartjes, F. A. (ed). Dealing with Contaminated Sites: From Theory towards Practical Application. Springer. Dordrecht. 56.Tang, X., Yi, L., Song, Y., He, X., Fang, L., & Zhang, J. (2020). Changes in root exudates’ Composition and their ability to release Cadmium adhered to soil in four Lettuce varieties under Cadmium stress. Journal of Environ. Studies. 30 (2), 1809-1816. DOI: 10.15244/ pjoes/126235.
57.Harris, N. S., & Taylor, G. J. (2004). Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation. Journal of BMC Plant Biology, 4, 1-12. https://doi.org/ 10.1186/1471-2229-4-4.
58.Larki, S., Rahnama, A., & Aynehband, A. (2015). The effect of potassium on cadmium distribution and accumulation in different organs of durum wheat. Journal of Plant production. 38(3), 79-92. https://doi.org/10.22055/ppd.2015.11455. [In Persian]
59.Greger, M., & Landberg, T. (2008). Role of rhizosphere mechanisms in Cd uptake by various wheat cultivars. Journal of Plant and soil, 312 (1-2), 195-205. DOI: 10.1007/s11104-008-9725-y. 60.Nigam, R., Srivastava, Sh., Prakash, S., & Srivastava, M. M. (2000). Effect of organic acids on the availability of cadmium in wheat. Journal of Chemical Speciation & Bioavailability, 12 (4), 125-132. DOI: 10.3184/095422900782775481.
61.Hart, J. J., Welch, R. M., Norvell, W. A., Sullivan, L. A., & Kochian, L. V. (1998). Characterization of zinc uptake, binding, and translocation in intact seedlings of bread and durum wheat cultivars. Journal of Plant Physiology, 116, 1413-1420. DOI: 10.1104/pp.118.1.219.
62.Stolt, P., Asp, H., & Hultin, S. (2005). Genetic variation in wheat cadmium accumulation on soils with different cadmium concentrations. Journal of Agronomy and Crop Science, 192, 201-208. DOI: 10.1111/j.1439-037X.2006.00202.x.
63.Eker, S., Erdem, H., Atilla Yazici, M., Barut, H., & Heybet, E. H. (2013). Effects of cadmium on growth and nutrient composition of bread and durum wheat genotypes. Journal of Fresenius Environmental Bulletin. 22(6), 1779-1786.
64.Hasan, S. A., Fariduddin, Q., Ali, B., Hayat, S., & Ahmad, A. (2007). Cadmium: Toxicity and tolerance in plants. Journal of Environmental Biology, 30(2), 165-174. DOI: 10.1016/ c2017-0-02050-5.
65.Gallegoa, S. M., Penaa, L. B., Barciaa, R. A., Azpilicuetaa, C. E., Iannonea, M. F., Rosalesa, E. P., Zawoznika, M. S., Groppaa, M. D., & Benavidesa, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Journal of Environmental and Experimental Botany, 83, 33-46. http://dx.doi.org/ 10.1016/j.envexpbot.2012.04.006.
66.Khoshgoftarmanesh, A. H., Shariatmadari, H., Karimian, N., Kalbasi, M., & Van der zee, S. E. A. T. M. (2006). Cadmium and Zinc in Saline Soil Solutions and their Concentrations in Wheat. Journal of Soil Science Society of America, 70 (2), 582-589. DOI: 10.2136/sssaj 2005.0136.
67.Naeem, A., Rehman, S., Zia ur, M., Akhtar, T., Ok, Y. S., & Rengel, Z. (2016). Genetic Variation in Cadmium Accumulation and Tolerance among Wheat Cultivars at Seedling Stage. Journal of Communications in Soil Science and Plant Analysis, 47 (5), 554-562. DOI: 10.1080/00103624. 2016.1141918. 68.Zhang, D., Zhou, H., Shao, L., Wang, H., Zhang, Y., Zhu, T., Ma, L., Ding, Q., & Ma, L. (2022). Root characteristics critical for cadmium tolerance and reduced accumulation in wheat (Triticum aestivum L.). Journal of Environmental Management, 305, 114365. https://doi. org/10.1016/j. jenvman. 2021.114365.
69.Liang, X., Strawn, D. G., Chen, J., & Marshall, J. (2017). Variation in cadmium accumulation in spring wheat cultivars: uptake and redistribution to grain. Journal of Plant Soil, 421, 219-231. DOI: 10.1007/s11104-017-3454-z.
70.Macfie, S. M., Bahrami, Sh., & McGarvey, B. D. (2016). Differential accumulation of cadmium in near-isogenic lines of durum wheat: no role for phytochelatins. Journal of Physiol Mol Biol Plants, 22 (4), 461-472. DOI: 10.1007/s12298-016-0383-x. | ||
آمار تعداد مشاهده مقاله: 238 تعداد دریافت فایل اصل مقاله: 231 |