
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,649,840 |
تعداد دریافت فایل اصل مقاله | 8,255,917 |
تأثیر سطوح مختلف مکمل لیپیدول بر عملکرد رشد، فراسنجههای خونی و شکمبهای گوسالههای شیرخوار هلشتاین | ||
نشریه پژوهش در نشخوار کنندگان | ||
دوره 11، شماره 4، دی 1402، صفحه 125-142 اصل مقاله (982.28 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejrr.2023.21745.1915 | ||
نویسندگان | ||
زهرا حسین زاده1؛ فرزاد قنبری* 2؛ جواد بیات2؛ عبدالحکیم توغدری3 | ||
1دانشآموخته کارشناسیارشد تغذیه دام ، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد، ایران | ||
2استادیار، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد، ایران | ||
3استادیار، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
چکیده | ||
سابقه و هدف: لیپیدول مجموعهای از لیزوفسفولیپیدهای فعال میباشد که با توجه به ساختار منحصر بهفرد خود، از طریق تغییر غشای سلولی و همچنین تحریک کانالهای جذبی، باعث افزایش جذب مواد مغذی میشود. این افزایش جذب بهدلیل شباهت ساختار لیپیدول و نواحی جذبی روده، بدون صرف انرژی اضافی صورت میگیرد و میتواند اولین تسریع کننده جذب و کاهش دهندۀ هزینه خوراک باشد. در خصوص استفاده از مکمل لیپیدول در جیره گوسالههای شیرخوار گزارشی در منابع علمی یافت نشد. این پژوهش بهمنظور بررسی تأثیر سطوح 5/0 و یک درصد مکمل لیپیدول بر عملکرد رشد، فراسنجههای خونی و شکمبهای گوسالههای شیرخوار هلشتاین انجام گرفت. مواد و روشها: تعداد 18 رأس گوساله نر 3 تا 5 روزه (44±3 کیلوگرم) بهطور تصادفی به 3 گروه مساوی تقسیم شده و هر گروه به یکی از تیمارها اختصاص داده شد. طول دوره آزمایش 60 روز بود. تیمارهای آزمایشی شامل 1- جیره پایه (شاهد)، 2- جیره پایه بهاضافه 5/0 درصد مکمل لیپیدول، و 3- جیره پایه به اضافه 1 درصد مکمل لیپیدول بودند. مکمل لیپیدول بهصورت روزانه به شیر مصرفی گوساله-ها اضافه میشد. در طول آزمایش مقدار خوراک مصرفی بهصورت روزانه تعیین میشد. وزنکشی توسط باسکول دیجیتال، و اندازهگیری شاخصهای رشد اسکلتی شامل طول بدن، دور سینه، فاصله دو پین، فاصله دو هیپ، فاصله هیپ تا پین، قد از هیپ و ارتفاع از جدوگاه توسط متر و کولیس، هر سه هفته یکبار انجام میگرفت. در انتهای آزمایش، 3 ساعت پس از خوراکدهی صبح، خونگیری برای اندازه-گیری غلظت پلاسمایی پروتئین کل، اوره، گلوکز، تریگلیسیرید و کلسترول (کیت پارس آزمون، دستگاه اتوآنالایزر)، و جمعآوری مایع شکمبه برای اندازهگیری pH و غلظت نیتروژن آمونیاکی (روش فنل هیپوکلریت، دستگاه اسپکتروفوتومتری) انجام شد. دادههای مربوط به عملکرد رشد، و فراسنجههای خونی و شکمبهای در قالب طرح کاملاً تصادفی و دادههای مربوط به شاخصهای رشد اسکلتی مطابق با طرح تکرار در زمان در نرم افزاز SAS تجزیه شدند. یافتهها: صفات عملکردی تحت تأثیر استفاده از مکمل لیپیدول قرار نگرفت (05/0> P) . اندازه قد از هیپ در گوسالههای دریافت کننده سطح 1 درصد لیپیدول نسبت به گروه شاهد تمایل به کاهش (074/0=P) نشان داد. سایر شاخصهای رشد اسکلتی تحت تأثیر تیمارها قرار نگرفتند (05/0> P). استفاده از سطح 1 درصد لیپیدول باعث افزایش سطح پروتئین کل خون شد (041/0=P). لیپیدول باعث کاهش سطح اوره خون شد (050/0=P). در مقابل، سطح کلسترول خون در اثر استفاده از این مکمل تمایل به افزایش داشت (072/0=P). بیشترین مقدار در سطح 5/0 درصد لیپیدول مشاهده شد. سطوح 5/0 و 1 درصد لیپیدول باعث کاهش نیتروژن آمونیاکی (0001/0>P) و pH (025/0=P) مایع شکمبه نسبت به شاهد شدند. نتیجهگیری: بهطور کلی استفاده از سطوح 5/0 و یک درصد مکمل لیپیدول تأثیر قابل ملاحظهای بر عملکرد گوسالههای شیرخوار هلشتاین نداشت. پیشنهاد میشود که در مطالعات بعدی، سطوح بالاتر این مکمل بررسی شوند. | ||
کلیدواژهها | ||
رشد اسکلتی؛ عملکرد؛ فراسنجههای خونی و شکمبهای؛ گوساله شیرخوار؛ لیزوفسفولیپید | ||
مراجع | ||
Al-Jebory, H.H., Alaw Qotbi, A.A., Ibrahim Al-Saeedi, M.K., Al-Khfaji, F.R., Ajafar, M., & Safaei, A. (2023). Biological activity of lysophospholipids in poultry and ruminants: A review. International Journal of Multidisciplinary Research and Growth evaluation, 4: 504-511. Broderick, G.A., & Kang, J.H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Animal Science, 63: 64-75. Cho, S., Kim, D.H., Hwang, I.H., & Choi, N.J. (2013). Investigation of dietary lysophospholipid (LIPIDOLTM) to improve nutrients availability of diet with in vitro rumen microbial fermentationtest. Journal of the Korean Society of Grassland and Forage Science, 33: 206-212. Coutteau, P., gearden, I., Camara, M.R., Bergot, P., & Sorgeloos, P. (1997). Review of the dietary effects of phospholipids in fish and crustacean laviculture. Aquaculture, 18: 100-129. Fadden, J. W. (2019). Dietary Lecithin Supplementation in Dairy Cattle. Department of Animal Science Cornell University. Farahmandpour, M., Chashnidel, Y., Teimouri Yansari, A., & Kazemi Fard, M. (2022). Effects of different levels of Lysophospholipid on the growth performance, nutrient digestibility, carcass characteristics, some blood parameters, and hepatic enzymes in crossbred Zell-Afshari fattening male lambs. Journal of Ruminant Research, 10: 1-18 [In Persian] Farahmandpour, M., Chashnidel, Y., Teimouri Yansari, A., & Kazemifard, M. (2023). Effects of different levels of Lysophospholipid on performance, digestibility, ruminal parameters, microbial population, and carcass fatty acids in fattening lambs. Animal Production Research, 12: 13-24 [In Persian] Galvao, K.N., Santos, J.E., Coscioni, P.A., Villasenor, M., Sischo, W.M., & Berge, A.C.B. (2005). Effect of feeding live yeast products to calves with failure of passive transfer on performance and pattern of antibiotic resistance in fecal Escherichia coli. Reproduction Nutrition Development, 45: 427-440. Gao, S., Zhang, L., Zhu, D., Huang, J., Yang, J., Jiang, J., Wu, H., & Lv, G. (2021). Effects of glucose oxidase and bacillus subtilis on growthperformance and serum biochemical indicexs of broilers exposed to aflatoxin B1 and endotoxin. Animal Feed Science and Technology, 286: 115186. He, Y., Zhong, R., Cheng, L., You, P., Li, Y., & Sun, X. (2020). Effects of the Supplementation of Lysophospholipids through Pelleted TotalMixed Rations on Blood Biochemical Parameters and Milk Production and Composition of Mid-Lactation Dairy Cows. Animals, 10: 215. Heidi A.H., Jesse, T.T., Brian R.G., & Jérôme, L. (2015). Amending reduced fish meal feeds with phospholipids to improve performance of hybrid striped bass. Journal of Animal Research and Nutrition, 1: 7-15. Huo, Q., Li, B., Cheng, L., Wu, T., You, P., Shen, S., Li, Y., He, Y., Tian, W., & Li, R. (2019). Dietary supplementation of lysophospholipids affects feed digestion in lambs. Animals, 9:805. Jones, D.G., Hancock, J.D., Harmon, D.L., & Walker, C.E. (1992). Effect of exogenous emulsifier and fat sources on nutrient digestibility, serum lipids, and growth performance in weanling pigs. Journal of Animal Science, 70: 3473–3482. Khan, M.A., Lee, H.J., Lee, W.S., Kim, H.S., Ki, K.S., & Hur, T.Y. (2007). Structural growth, rumen development, and metabolic and immune responses of Holstein male calves fed milk through step-down and conventional methods. Journal of Dairy Science, 90: 3376–3387. Koo, S.I., & Noh, S.K. (2007). Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. The Journal of Nutritional Biochemistry, 18: 179-183. Lee, C., Morris, D.L., Copelin, J.E., Hettick, J.M., & Kwon, I. H. (2019). Effects of lysophospholipids on short-term production, nitrogen utilization, and rumen fermentation and bacterial population in lactating dairy cows. Journal of Dairy Science, 102: 3110-3120. Li, X.Z., Park, B.K., Hong, B.C., Ahn, J.S., & Shin, J.S. (2017). Effect of soy lecithin on total cholesterol content, fatty acid composition andcarcass characteristics in the Longissimus dorsi of Hanwoo steers (Korean native cattle). Animal Science Journal, 88: 847–853. Lu, Z., Yao, Ch., Tan, B., Dong, X., Yang, Q., Liu, H., Zhang, Sh., & Chi, Sh. (2022). Effects of lysophospholibid supplementation in feed with low protein or lipid on growth performance, lipid metabolism, and intestinal flora of largemouth bass (Micropterus salmoides). Aquaculture Nutrition, 2022: 4347466 Lundbaek, J.A., & Andersen, O.S. (1994). Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. The Journal of General Physiology, 104:645-673. Reis, M.E., Toledo, A.F., da Silva, A.P., Poczynek, M., Fioruci, E.A., Cantor, M.C., Greco, L., & Bittar, C.M.M. (2021). Supplementation of lysolecithin in milk replacer for Holstein dairy calves: Effects on growth performance, health, and metabolites. Journal of Dairy Science, 104: 5457–5466. Solbi, A., Rezaeipour, V., Abdullahpour, R., & Gharahveysi, Sh. (2021). Efficacy of lysophospholipid on growth performance, carcass, intestinal morphology, micribial population and nutrient digestibility in broiler chickens fed different dietary oil soures. Itaian Journal of Animal Science, 20: 1612-1619. Song, W.S., Yang, J., Hwang, H., Cho, S., & Choi, N.J. 2015. Effect of dietary lysophospholipid (LIPIDOLTM) supplementation on the improvement of forage usage and growth performance in Hanwoo heifer. Journal of the Korean Society of Grassland and Forage Science, 35: 232-237. Sung I.K., & Sang K.N. (2001). Phosphatidylcholine inhibits and lysophosphatidylcholine enhances the lymphatic absorption of alpha-tocopherol in adult rats. Journal of Nutrition, 131: 717-22. Taghavizaeh, M., Hosseini Shekarabi, S.P., Shamsaie Mehrgan, M., & Rajabi Eslami, H. (2020). Efficacy of dietary lysophospholipids (Lipidol TM) on growth performance, serum immune-biochemical parameters, and the expression of immune and antioxidant related genes in rainbow trout. Aquaculture, 525: 735315. Teymouri, H., Ghanbari, F., Bayatkouhsar, J., & Rahchamani, R. (2021). Effect of probiotic and vitamin E+ selenium supplements on performance and some blood and ruminal parameters of Holstein calves. Journal of Ruminant Research, 8: 77-96. (In Persian) Tocher, D.R., Bendiksen, E., Campbell, P.J., & Bell, J.G. (2008). The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture, 280: 21–34. Weng, M., Zhang, W., Zhang, Zh., Tang, Y., Lai, W., Dan, Zh., Liu, Y., Zheng, J., Gao, Sh., Mai, K., & Ai, Q., (2022). Effect of dietary lysolecithin on growth performance, serum biochemical indexes, antioxidant capacity, lipid metabolism and inflammation-related genes expression of Juvenile large yellow croaker (Larimichthys crocea), 128: 50-59. Xing, J.J., van Heugten, E., Li, D.F., Touchette, K.J., Coalson, J.A., Odgaard, R.L., & Odle, J. (2004). Effects of emulsification, fat encapsulation, and pelleting onweanling pig performance and nutrient digestibility. Journal of Animal Science, 82: 2601–2609. Xu, H., Lou, X., Bi, Q., Wang, Zh., Meng, X., Liu, J., Duan, M., Wei, Y., & Liang, M. (2022). Effects of dietary lysophosphatidylcholine on growth performance and lipid metabolism of juvenile torbut. Aquaculture Nutrition, 2022: 1-12. Zampiga, M., Meluzzi, A., & Sirri, F. (2016). Effect of dietary supplementation of lysophospholipid on productive performance, nutrient digestibility and carcass quality traits of broiler chichens. Italiian Journal of Animal Science, 15: 521-528. Zhang, M., Bai, H., Zhao, Y., Wang, R., Li, G., Zhang, G., & Zhang, Y. (2022). Effects of Dietary LysophospholipidInclusion on the GrowthPerformance, Nutrient Digestibility, Nitrogen Utilization, and BloodMetabolites of Finishing Beef Cattle. Antioxidants, 11: 1486. Zhao, P.Y., Li, H.L., Hossain, M.M., & Kim, I.H. (2015). Effect of emulsifier (lysophospholipids) on growth performance, nutrient digestibility and blood profile in weanling pigs. Animal Feed Science and Technology, 207: 190–195. | ||
آمار تعداد مشاهده مقاله: 226 تعداد دریافت فایل اصل مقاله: 212 |