
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,650,473 |
تعداد دریافت فایل اصل مقاله | 8,256,600 |
بررسی میزان آرسنیک در منابع آب و خاک یک منطقه آلوده و میزان جذب و انباشتگی آن در گیاهان بومی مرتعی منطقه ( مطالعه موردی: شهرستان بیجار) | ||
مجله پژوهشهای حفاظت آب و خاک | ||
دوره 31، شماره 1، فروردین 1403، صفحه 73-92 اصل مقاله (846.78 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2024.21369.3648 | ||
نویسندگان | ||
ستار زندسلیمی1؛ چنور عبدی2؛ امید بهمنی* 3 | ||
1دانشجوی دکتری آبیاری و زهکشی، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلیسینا، همدان، ایران. | ||
2دانشجوی دکتری آبیاری و زهکشی، گروه علوم و مهندسی آب ، دانشکده کشاورزی، دانشگاه بوعلیسینا، همدان، ایران | ||
3نویسنده مسئول، دانشیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلیسینا، همدان، ایران. | ||
چکیده | ||
سابقه و هدف: آرسنیک از سموم مهم محیط زیست به شمار میآید که با جذب از طریق ریشه گیاهان، در اندامهای گیاهی و حتی جانوری تجمع یافته و از طریق چرخه غذایی یا مصرف مستقیم آب آلوده وارد بدن انسان میشود. برخی گزارشات آلودگی منابع آب شرب منطقهای از شهرستان بیجار در استان کردستان به عنصر آرسنیک و عوارض آن در ساکنین منطقه را نشان داده است، لذا این پژوهش با هدف بررسی پراکنش آرسنیک در منابع آب و خاک منطقه و ارزیابی توان گیاهان بومی مرتعی در جذب و انباشتگی این عنصر انجام شد. مواد و روشها: در این طرح با نمونهبرداری از آبهای سطحی و زیرسطحی منطقهای به مساحت 360 کیلومترمربع و اندازه-گیری غلظت آرسنیک نمونههای آب بوسیله دستگاه طیف سنج جذب اتمی به روش کوره گرافیتی، توزیع و پراکنش آرسنیک منطقه آلوده، در محیط ArcGIS پهنهبندی شد و با بررسی نقشه پراکنش آرسنیک در منطقه، سه ناحیه نمونهبرداری با شدت آلودگی ناهمانند (A > B >C ) گزینش گردید. سپس با گردآوری نمونههای خاک و اندامهای هوایی 13 گونه گیاه بومیمرتعی منطقه و اندازهگیری غلظت آرسنیک در عصاره آنها، قدرت گیاهان مختلف در جذب و انباشتگی آرسنیک مورد مقایسه و آنالیز آماری قرار گرفت. یافتهها: شدت آلودگی آرسنیک در آبهای سطحی، خاک و گیاهان مورد مطالعه در این پژوهش بالاتر ازغلظت معمول آرسنیک منابع آب و خاک و گیاه بود. آرسنیک کل نمونههای آب از 5/4 تا 280 میکروگرم بر لیتر متغییر بود و با هدایت الکتریکی، املاح محلول و سختی خاک رابطه مستقیمی داشت (P<0.001). تمرکز آلودگی در خاک ناحیه A (روستای علیآباد) با میانگین شدت آلودگی بیش از 2059 میکروگرم در هر گرم خاک خشک بود، با فاصله گرفتن از منطقه A، شدت آلودگی آب و خاک به آرسنیک کاهش یافت. همبستگی بالایی بین شدت آلودگی آب و خاک وجود داشت (R2=0.84). مقدار آرسنیک در بخش هوایی 13 گونه گیاهی با 3 تکرار، بسته به گونه گیاهی و شدت آلودگی خاک از صفر تا 8/47 میکروگرم بر گرم وزن خشک بافت گیاهی متغییر بود. شدت آلودگی خاک بطور میانگین 66/27 برابر میزان آرسنیک انباشته شده در گیاه بود که بیانگر مقاومت بالای گیاهان بومیمرتعی منطقه در برابر سمیت آرسنیک میباشد. نتیجه گیری: با در نظر گرفتن استاندارد ملی آب آشامیدنی برای آرسنیک (μg l-1 50)، غلظت آرسنیک در بیش از 45 درصد از منابع آب منطقه مورد مطالعه، متجاوز از حد استاندارد ملی بود و بر اساس استاندارد سازمان بهداشت جهانی (μg l-110)، سطح آلودگی به 78 درصد رسید. به نظر میرسد تمرکز مواد مادری حاوی ترکیبات آرسنیکدار در منطقه A و B نسبت به منطقه C بیشتر است و هرچه از منطقه A دورتر شدیم تراکم مواد مادری حاوی آرسنیک کاهش یافت. بطوریکه ناحیه نمونهبرداری اثر معنیداری بر میانگین غلظت آرسنیک نمونههای آب و خاک داشت (P<0.05). آرسنیک جذب شده توسط نمونههای گیاهی بسیار بیشتر از غلظت معمول آرسنیک (1/0 تا 3 میکروگرم بر گرم وزن خشک) در گیاه بود. در مقایسه گیاهان مورد بررسی در این پژوهش، گیاه آستراگالوس بیزنلکاتوس ( Astraglus bisnlcatus) ، کنوپودیوم آلبوم (Chenopodium Album) و منتآلوگیفولیا ( Mentha logifolia) به ترتیب با انباشتگی بیش از 8/47، 5/35 و 5/22 میکروگرم آرسنیک در هر گرم وزن خشک گیاه، بهترین گزینه تجمع آرسنیک شناسایی شد. نتایج بدست آمده در این مطالعه بیانگر آلودگی شدید منابع آب و خاک و گیاه منطقه به عنصر آرسنیک است، بیشتر منابع آب سطحی منطقه مورد مطالعه، جهت آبیاری کشاورزی، مصرف حیوانات و گاهی آب شرب ساکنین روستاها استفاده میشود. ورود آرسنیک به بدن انسان بهطور مستقیم یا از طریق چرخه غذایی، میتواند سلامتی ساکنین منطقه را به-شدت به خطر اندازد که نیازمند انجام تمهیداتی در این خصوص است. | ||
کلیدواژهها | ||
آلودگی آرسنیک؛ آب سطحی؛ خاک؛ انباشتگی گیاهی؛ بیجار | ||
مراجع | ||
1.Angle, J. S. (1999). Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and Phyto mining. J. Environ. Qual. 28, 1045.2.Fitz, W. G. & Wenzel, W. (2002). Arsenic transformations in the soil-/rhizosphere-/plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology. 99, 259-278.3.Bettaieb, T., & Arbaoui, S. (2018). Heavy metal accumulation in micro propagated plants of kenaf (Hibiscus cannabinus L.). Int. J. Adv. Sci. Eng. Technol. 6, 32-33.4.Bettiol, C., Minello, F., Gobbo, L., Rigo, C., Bedini, S., Bona, E., Berta, G., & Argese, E. (2012). Phytoremediation potential of the arsenic hyperaccumulator Pteris vittata: Preliminary results from a eld study. Sci. Ca’ Foscari. 1, 25-31.5.Chen, W. Q., Shi, Y. L., Wu, S. L., & Zhu, Y. G. (2016). Anthropogenic arsenic cycles: A research framework and features. J. Clean. Prod. 139, 328-336.6.Reimann, C., & de Caritat, P. (1998). Chemical Elements in the Environment, Springer: Berlin/Heidelberg, Germany.7.Adriano, D. C. (2001). Trace Elements in the Terrestrial Environment. Springer, New York, 532p.8.Manning, B. A., & Goldberg, S. (1997). Arsenic (III) and arsenic (V) adsorption on three California soils. Soil Science. 162, 886-895.9.Verstraete, W., & Top, E. M. (1999). Soil clean-up: Lessons to remember. International Biodeterioration and Biodegradetion. 43 (3), 147-153.10.Jack, C. N., Wang, J., & Shraim, A. A. (2003). Global health problem caused by arsenic from natural sources. Chemosphere. 52, 1353-1359.11.Jain, C. K., & Ali, I. (2000). Arsenic: occurrence toxicity and speciation techniques. Water Resour. 34, 4304-4312.12.Mosaferi, M., Yunesian, M., Mesdaghinia, A. R., Nadim, A., Nasseri, S., & Mahvi, A. H. (2003). Occurrence of arsenic in Kurdistan Province of Iran. In BUET-UNU international symposium, international training network center. Dhaka, Bangladesh. Tokyou.13.Chakraborti, D., Sengupta, M. K., & Rahman, M. M. (2004). Groundwater arsenic contamination and its health effects in the Ganga-Meghna-Brahmaputra plain. J. Environ. Monit.6, 74-83.14.WHO. (2000). Environmental health criteria, arsenic and arsenic compounds. Inter-organization programme for the sound ma.15.NRC. Arsenic in Drinking Water. (2001). Update; National Academy Press: Washington, DC, USA.16.Arbaoui, S., Campanella, B., Rezgui, S., Paul, R., & Bettaieb, T. (2014). Bioaccumulation and photosynthetic activity response of kenaf (Hibicus cannabinus L.) to cadmium and zinc. Greener J. Agri. Sci. 4, 91-100.17.Kazia, T. G., Araina, M. B., Baig, J. A., Jamali, M. K., Afridi, H. I., Jalbani, N., Sarfraz, R. A., Shah, A. Q., & Niaza, A. (2009). The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Sci. Total Environ. 407, 1019-1026.18.Madejón, P., & Lepp, N. W. (2007). Arsenic in soils and plants of woodland regenerated on an arsenic-contaminated substrate: A sustainable natural remediation? Science of the total environment. 379, 256-262.19.Meharg, A. A., & Jardine, L. (2003). Arsenite transport into paddy rice (Oryza sativa) roots. New Phytologist. 157, 39-44.20.Zhao, F. J., Lombi, E., Breedon, T., & Mogratta S. P. (2000). Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell and Environment. 23, 507-514.21.Fayiga, A. O., Ma, L. Q., & Santos, J. (2005). Effects of Arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system. International Journal of Phytoremediation. 7, 231-240.22.Cantamessa, S., D’agostino, G., & Berta, G. (2016). Hydathode structure and localization in Pteris vittata fronds and evidence for their involvement in arsenic leaching. Plant Biosyst. 150, 1208-1215.23.Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001a). A fern that hyperaccumulates arsenic. Nature. 409, 579.24.Ronzan, M., Zanella, L., Fattorini, L., Della Rovere, F. Urgast, D., Cantamessa, S., Nigro, A., Barbieri, M., Sanità di Toppi, L., Berta, G., & et al. 2017. The morphogenic responses and phytochelatin complexes induced by arsenic in Pteris vittata change in the presence of cadmium. Environ. Exp. Bot. 133, 176-187.25.Sheppard, S. C. (1992). Summary of phytotoxic levels of soil As. Water Air Soil Pollution. 64, 539-550.26.Smith, E., Naidu, R., & Alston, A. M. (1999). Chemistry of arsenic in soils: I.Sorption of arsenate and arsenite by four Australian soils. Journal of Environmental Quality. 28, 1719-1726.27.Wan, X., Lei, M., & Chen, T. (2016). Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated. Soil Sci. Total Environ. 563-564, 796-802.28.Trotta, A., Falaschi, P., Cornara, L., Minganti, V., Fusconi, A., Drava, G., & Berta, G. (2006). Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere. 65, 74-81.29.Tu, S., & Ma, L. Q. (2004). Comparison of arsenic and phosphate uptake and distribution in arsenic hyperaccumulating and non-hyperaccumulating fern. Journal of Plant Nutrition. 27, 1227-1242.30.Karimi, N., Ghaderian, S. M., Marofi, H., & Schat, H. (2010). Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. International Journal of Phytoremediation. 12, 159-173.31.Mosaferi, M., Yunesian, M., Dastgiri, S., Mesdaghiniad, A., & Esmailnasab, N. (2009). Prevalence of skin lesions and exosure to arsenic in drinking water in Iran. Sci. Total Environ. 390, 69-76.32.Mosaferi, M., Yunesian, M., Mesdaghinia, A. R., Nasseri, S., Mahvi, A. H., & Nadim, H. (2005). Correlation between arsenic concentration of drinking water and hair. Iran J. Environ. Health Sci. Eng. 2, 11-23.33.Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv, G. R., Chidambaram, S., Sarama, V. S., Anandhan, P., Manivannan, R., & Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ. Monitor. Assess. 171 (1-4), 595-609.34.Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In: Klute, A. (Ed) Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Soil Sci. Soc. Am. Agronomy Monograph 9. 2nd Ed. 383-411.35.Walkly, A., & Black, I. A. (1934). An examination of digestion method for determining soil organic matter and a proposed modification of the chromic acid titration. Soil Sci. 37, 29-38.36.Meharg, A. A., & Hartley, W. J. (2002). Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytologist. 154, 29-44.3737.Mesdaghinia, A. R., Mosaferi, M., Yunesian, M., Nasseri, S., & Mahvi, A. H. (2005). Measurement of arsenic concentration in drinking water of a polluted area using a field and SDDC methods accompanied by assessment of precision and accuracy of each method. Hakim. 8 (1), 43-51. [In Persian]38.Anawar,.Anawar, H. M., Garcia-Sanchez, A., Murciego, A., & Buyolo, T. (2006). Exposure and bioavailability of arsenic in contaminated soils from the La Parrilla mine, Spain. Environmental Geology. 50, 170-179.39.Nabiollahi, K., & Haidari, A. (2016). Investigation of Mineralogy of arsenic-contaminated region of Kurdistan, Bijar. Watershed Engineering and . [In Persian]40.Singh, N., & Ma, L. Q. (2006). Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L. Environ. Pollut. 141, 38-246.Management. 7 (4), 479-487. [In Persian] | ||
آمار تعداد مشاهده مقاله: 301 تعداد دریافت فایل اصل مقاله: 176 |