
تعداد نشریات | 13 |
تعداد شمارهها | 646 |
تعداد مقالات | 6,748 |
تعداد مشاهده مقاله | 9,382,663 |
تعداد دریافت فایل اصل مقاله | 8,753,057 |
ارزیابی پایداری عملکرد دانه و تنوع آللی زیر واحدهای گلوتنین با وزن مولکولی پایین لاینهای پیشرفته گندم نان ( (Triticum aestivum L. | ||
پژوهشهای تولید گیاهی | ||
دوره 32، شماره 2، تیر 1404، صفحه 41-57 اصل مقاله (1.14 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2024.22278.3131 | ||
نویسندگان | ||
طیبه جعفری نظرآبادی1؛ علی اصغر نصراله نژاد قمی* 2؛ علاءالدین کردنائیج3؛ خلیل زینلی نژاد4 | ||
1دانشجوی دکتری اصلاح نباتات و بیوتکنولوژی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
2نویسنده مسئول، دانشیار گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
3استادیار گروه بهنژادی و بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه شاهد، تهران، ایران | ||
4استادیار گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
چکیده | ||
مقدمه و هدف: صفات کمّی به مقدار زیادی تحت تأثیر عوامل محیطی قرار میگیرند که مهمترین نتیجهی آن مخفی ماندن رابطهی بین ژنوتیپ و فنوتیپ بهطور ناقص و یا کامل میباشد. لذا اطلاع از میزان تأثیر محیط روی صفات کمی برای بهنژادگر بسیار مهم است. یکی از خصوصیات کیفی مورد توجه در اصلاح گندم، کیفیت پروتئینهای ذخیرهای است. گلوتنینهای با وزن مولکولی پایین بر روی تشکیل پلیمرهای بزرگ گلوتنین و کششپذیری خمیر تاثیر دارند و کلیه فرآوردههای حاصل از گندم نان نیازمند خمیری با کششپذیری بالا میباشند. اهداف تحقیق حاضر، بررسـی اثـر متقابـل ژنوتیـپ × محیط بـا اسـتفاده از روشهای تک متغییره در لاینهای تلاقی برگشتی پیشرفته گندم نان، شناسـایی و معرفـی لاینهای دارای عملکرد اقتصـادی بـالا و پایـدار و ارقام اصلاحی حاوی آللهای مطلوب از گلوتنین با وزن مولکولی پایین میباشند. مواد و روشها: در این تحقیق پایداری عملکرد دانه پنج لاین تلاقی برگشتی پیشرفته گندم نان (BC2F6) همراه با والدین آنها در قالب طرح بلوکهای کامل تصادفی با سه تکرار در مکانهای تهران، کرمانشاه و گرگان و سالهای زراعی (97-1396) و (98-1397) مورد بررسی قرار گرفت. هر یک از لاینها در کرتهایی با هشت خط چهار متری با فاصله خطوط 25 سانتیمتر کاشته شد. استخراج DNA به روش دویل دویل صورت گرفت. کیفیت و کمیت نمونههایDNA ژنومی استخراج شده با استفاده از الکتروفورز ژل آگارز 8/0 درصد ارزیابی شد. واکنش PCR برای تکثیر قطعات نشانگرها با استفاده از چهار جفت آغازگر آلل اختصاصی ژنهای رمزدهنده گلوتنین با وزن مولکولی پایین در حجم 15میکرولیتر انجام شد. جداسازی قطعات نشانگرهای تکثیر شده به وسیله الکتروفورز ژل آگارز دو درصد انجام شد. یافتهها: نتایج حاصل از تجزیه واریانس مرکب اختلاف معنیداری را در سطح احتمال یک درصد برای اثر محیط و اثر متقابل ژنوتیپ × محیط نشان داد. بین لاینهای مورد بررسی اختلاف معنیداری برای عملکرد دانه مشاهده نشد. بر اساس نتایج بهدست آمده از اکوالانس ریک، ابرهات و راسل و ضریب تغییرات فنوتیپی لاین L4 ، بر اساس نتایج روش فینیلی و ویلکینسون و واریانس پایداری شوکلا لاینهای شماره L3 و L4 و بر اساس روشهای پلیستد و پیترسون و پلیستد L4 به عنوان لاین پایدار با عملکرد بالا نسبت به سایر لاینهای مورد آزمایش معرفی گردیدند. در بررسی تنوع آللی زیر واحدهای گلوتنین با وزن مولکولی پایین در مجموع نتایج به دست آمده بیانگر شباهت اندازه باندهای تکثیری بین والد دورهای تایفون و پنج لاین حاصل از تلاقی برگشتی (L1، L2، L3، L4 و L5) در چهار آغازگر مورد بررسی بود. نتیجهگیری: در جمعبندی کلی روشهای مورد استفاده لاین L4 به عنوان لاین پایدار باعملکرد بالا معرفی و برای بهدست آوردن حداکثر عملکرد، کشت این لاین در محیطهای مورد بررسی پیشنهاد میشوند. چهار مکان ژنی کنترل کننده گلوتنین با وزن مولکولی پایین مورد بررسی به عنوان عامل موثر در ارزش نانوایی، از والد دورهای تایفون که رقمی با کیفیت نانوایی بالا میباشد، به نتاج حاصل از تلاقی برگشتی منتقل گردیده است. بنابراین احتمال میرود نتاج از کیفیت نانوایی بالایی برخوردار میباشند. کلید واژه: پایداری عملکرد، تنوع آللی، زیر واحدهای گلوتنین با وزن مولکولی پایین، گندم نان | ||
کلیدواژهها | ||
پایداری؛ تنوع آللی؛ زیر واحدهای گلوتنین با وزن مولکولی پایین؛ گندم | ||
مراجع | ||
1.Ghodrati-Niari, F., & Abdolshahi, R. (2014). Evaluation of yield stability of 40 bread wheat (Triticum aestivum L.) genotypes using additive main effects and multiplicative interaction (AMMI). Iranian Journal of Crop Sciences, 16(4), 322-333.
2.Koyro, H. W., Ahmad, P., & Geissler, N. (2012). Abiotic stress responses in plants: an overview. In environmental adaptations and stress tolerance of plants in the era of climate change. Springer New York, pp. 1-28.
3.Baker, H. C., & Leon, J. (1988). Stablity analysis in plant breeding. Plant Breeding, 101(1), 1-23.
4.Farshadfar, E. (2015). The interaction effect of genotype and environment in plant breeding. first volume. Islamic Azad University Press. Kermanshah. [In Persian]
5.Scapim, C. A., Oliveria, V. R., de Lucca e Braccini, A., Cruz, C. D., de Bastos Andrade, C. A., & vidigal, M. C. G. (2000). Yield stability in maize (Zea mays L.) and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models. Genentics and Molecular Biology, 23 (2), 387-393.
6.Wricke, G. (1962). Uber eine methode zur refassung der okologischen streubretite in feldversuchen. Zeitschrift fur Pflanzenzuchtung, 47, 92-96.
7.Romagosa, M., & Fox, P. N. (1993). Integration of statistical and physiological adaptation in barley cultivars. Theorical and Applied Genetics, 86, 822-826.
8.Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research, 14, 742-754
9.Eberhart, S. A., & Russel, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6, 36-40.
10.Jalal Kamali, M. R. (2008). An overview of the status of wheat in the past, present and future world. Key articles of the 10th Congress of Agricultural Sciences and Plant Breeding of Iran, 23-45.
11.D`ovidio, R., & Masci, S. (2004). The low-molecular-weight glutenin subunits of wheat gluten. Cereal Science, 39 (3), 321-339.
12.Wanous, M., Munkword, J., Kruse, J., Brachman, E., Klawiter, M., & Fuehrer, K. (2003). Identification of chromosome arms influencing expression of the HMW glutenins in wheat. Theoretical and Applied Genetics, 106, 213-220.
13.Ahmad, M. (2000). Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theoretical and Applied Genetics,101, 892-896.
14.Gale, K. R. (2005). Diagnostic DNA markers for quality traits in wheat. Cereal Science, 41, 181-192.
15.Gupta, R. B., Paul, J. G., Cornish, G. B., Palmer, G. A., Bekes, F., & Rathjen, A. J. (1994). Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3, and Gli-1, of common wheats. I. Its additive and interaction effects on dough properties. Journal of Cereal Science, 19, 9-17.
16.Karimizadeh, R., Hosseinpour, T., Alt Jafarby, J., Shahbazi Homonlo, K., & Armion, M. (2021). Evaluation of Genotype × Environment Interaction and Determining Grain Yield Stability of Durum Wheat Genotypes in Uniform Regional Yield Trials in Semi-Warm Rainfed Areas. Plant Genetic Researches, 7(2), 25-40.
17.Najafi Mirak, T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M., & Zali, H. (2018). Stability analysis of grain yield of durum wheat promising lines in warm and dry areas using parametric and non-parametric methods. Journal of Crop Production and Processing, 8(2), 79-96.
18.Akcura, M., Kaya, Y., Taner, S., & Ayranici, R. (2006). Parametric stability analysis for grain yield of durum wheat. Plant Soil Environment, 52, 254-261.
19.Zarei, L., Farshadfar, E., Haghparast, R., Rajabi, R., Mohammadi-Sarab-Badieh, M., & Zali, H. (2012). Comparison of different methods of stability evaluation in bread wheat genotypes under drought stress conditions. Electronic Journal of Crop Production, 5, 81-97. [In Persian]
20.Hatami Maleki, H., Vaezi, B., Mohammadi, R., Mehraban, A., Ahmadi, A., Sabzi, Z., & Sabgahnia, N. (2022). Stability analysis and genotype × environment interaction study for grain yield of some barley genotypes. Iranian Journal Genetics and Pant Breeding, 9(2), 134-143.
21.Pour-Aboughadareh, A., Barati, A., Koohkan, S. A., Jabari, M., Marzoghian, A., Gholipoor, A., Shahbazi-Homonloo, K., Zali, H., Poodineh, O., & Kheirgo, M. (2022). Dissection of genotype-by-environment interaction and yield stability analysis in barley using AMMI model and stability statistics. Bulletin of the National Research Centre, 46, 19.
22.Hoseinian Khoshru, H., Bihamta, M. R., Hasani, M. E., & Omidi, M. (2010). Allelic Diversity of Low-Molecular-Weight Glutenin Subunits in Commercial Genotypes of Iranian Bread Wheat (Tritium aestivum L.) using Specific Markers. Iranian Journal of Field Crop Science, 41(2), 345-354.
23.Doyle, J. J. و& Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.
24.Long, H., Wei, Y. M., Yan, Z. H., Baum, B., Nevo, E., & Zheng, Y. L. (2005). Classification of wheat group-specific primers. Theoretical and Applied Genetics, 111, 1251-1259.
25.Farshadfar, E,. Haghparast ,R., & Qaitoli, M. (2008). Chromosomal localization of the genes controlling agronomic and physiological indicators of drought tolerance in barley using disomic addition lines. Asian journal of plant Science, 7(6), 536-543.
26.Kang, M. S., Gorman D. P., & Pham, H. N. (1991). Application of a stability statistic to international maize yield trials. Theoretical and Applied Genetics, 81, 162-165.
27.Francis T. R., & Kannenberg, L. W. (1978). Yield stability studies in short-season maize. 1. A descriptive method for grouping genotypes. Canadian Journal of Plant Science, 58, 1029-1034.
28.Shukla, G. K. (1972). Some statistical aspect of partitioning genotype environment components of variability. Heredity, 29, 237-245.
29.Roy, D. (2000). Plant breeding analysis and exploitation of variation. Alpha Science International Ltd., U.K, 35, 12-18.
30.Plaisted, R. I., & Peterson, L. C. (1959). A technique for evaluating the ability of selection to yield consistently in different locations or seasons. Potato Journal, 36, 381-385. | ||
آمار تعداد مشاهده مقاله: 350 تعداد دریافت فایل اصل مقاله: 13 |