
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,624,107 |
تعداد دریافت فایل اصل مقاله | 8,213,593 |
تأثیز بافرمه بز واپدیدشدن مواد مغذی در محیط کشت باکتزی و قارچهای شکمبه | ||
نشریه پژوهش در نشخوار کنندگان | ||
دوره 12، شماره 3، آذر 1403، صفحه 137-154 اصل مقاله (848.81 K) | ||
نوع مقاله: مقاله کامل علمی- پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejrr.2024.22088.1934 | ||
نویسندگان | ||
غزاله عالیوند1؛ طاهره محمدآبادی* 2 | ||
1دانشجوی کارشناسی ارشد، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ایران. | ||
2استاد، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ایران، | ||
چکیده | ||
The aim of this study was to examine the effect of Bufferman as a biological regulator on the disappearance of nutrients by bacterial and fungi in anaerobic culture in diets containing different ratios of concentrate to Forage. The experimental diets consisted of different forage to concentrate ratios (respectively 20-80, 30-70, 40-60, 60-40) with treatments included control (zero percent), Bufferman 1% and 2%, and sodium bicarbonate 1 %. This research was conducted in vitro, using a completely randomized design. The experiment results indicated that the disappearance rates of DM , NDF , ADF and rumen pH were influenced by the test diets (P<0.05). Different forage to concentrate ratios (20:80, 30:70, 40:60, 60:40 F:C) were influenced by buffering, resulting in the highest disappearance of DM, disappearance of NDF, and disappearance of ADF in treatments with 1% Bufferman inclusion (P<0.05). According to the present experiment, it can be inclusion of 1% Bufferman led to a significant increase in nutrient disappearance and rumen pH by creating favorable conditions for bacterial and fungal activity throughout the evaluation period. The aim of this study was to examine the effect of Bufferman as a biological regulator on the disappearance of nutrients by bacterial and fungi in anaerobic culture in diets containing different ratios of concentrate to Forage. The experimental diets consisted of different forage to concentrate ratios (respectively 20-80, 30-70, 40-60, 60-40) with treatments included control (zero percent), Bufferman 1% and 2%, and sodium bicarbonate 1 %. This research was conducted in vitro, using a completely randomized design. The experiment results indicated that the disappearance rates of DM , NDF , ADF and rumen pH were influenced by the test diets (P<0.05). Different forage to concentrate ratios (20:80, 30:70, 40:60, 60:40 F:C) were influenced by buffering, resulting in the highest disappearance of DM, disappearance of NDF, and disappearance of ADF in treatments with 1% Bufferman inclusion (P<0.05). According to the present experiment, it can be inclusion of 1% Bufferman led to a significant increase in nutrient disappearance and rumen pH by creating favorable conditions for bacterial and fungal activity throughout the evaluation period.The aim of this study was to examine the effect of Bufferman as a biological regulator on the disappearance of nutrients by bacterial and fungi in anaerobic culture in diets containing different ratios of concentrate to Forage. The experimental diets consisted of different forage to concentrate ratios (respectively 20-80, 30-70, 40-60, 60-40) with treatments included control (zero percent), Bufferman 1% and 2%, and sodium bicarbonate 1 %. This research was conducted in vitro, using a completely randomized design. The experiment results indicated that the disappearance rates of DM , NDF , ADF and rumen pH were influenced by the test diets (P<0.05). Different forage to concentrate ratios (20:80, 30:70, 40:60, 60:40 F:C) were influenced by buffering, resulting in the highest disappearance of DM, disappearance of NDF, and disappearance of ADF in treatments with 1% Bufferman inclusion (P<0.05). According to the present experiment, it can be inclusion of 1% Bufferman led to a significant increase in nutrient disappearance and rumen pH by creating favorable conditions for bacterial and fungal activity throughout the evaluation period. | ||
کلیدواژهها | ||
bufferman؛ concentrate؛ digestibility؛ Sodium bicarbonate | ||
مراجع | ||
Abbas, G., Ahmad, F., Saeed, M., Ayasan, T., Mahmood, A., Yasmeen, R. & Kamboh, A. (2019). Effect of dietary inclusion of sodium bicarbonate on digestibility of nutrients and immune response in caged layers during the summer. Brazilian Journal of Poultry Science, 21, eRBCA-2018.
Al-Arif, M. A., Suwanti, L. T., Estoepangestie, A. S. & Lamid, M. (2017). The nutrients contents, DM digestibility, organic matter digestibility, total digestible nutrient, and NH3 rumen production of three kinds of cattle feeding models. KnE Life Sciences, 338-343.
Alhidary, I. A., Abdelrahman, M. M. & Elsabagh, M. A. (2019). comparative study of four rumen buffering agents on productive performance, rumen fermentation and meat quality in growing lambs fed a total mixed ration. Animal. Oct;13(10):2252-2259. doi: 10.1017/S1751731119000296. Epub 2019 Mar 1. PMID: 30819265.
Amanzougarene, Z. & Fondevila, M. (2022). Rumen Fermentation of Feed Mixtures Supplemented with Clay Minerals in a Semicontinuous in Vitro System. Animals, 12(3): 345.
Aschenbach, J. R., Zebeli, Q., Patra, A. K., Greco, G., Amasheh, S. & Penner, G. B. (2019). Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. Journal of Dairy Science, 102(2): 1866-1882.
Bach, A., Calsamiglia, S. & Stern, M. D. (2005). Nitrogen metabolism in the rumen. Journal of Dairy Science, Apr 1(88): E9-21.
Blu, M. & Ørskov, E. R. (1993). Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science and Technology, 40(2-3): 109-119.
Castillo-Lopez, E., Petri, R. M., Ricci, S., Rivera-Chacon, R., Sener-Aydemir, A., Sharma, S. ... & Zebeli, Q. (2021). Dynamic changes in salivation, salivary composition, and rumen fermentation associated with duration of high-grain feeding in cows. Journal of Dairy Science, 104(4): 4875-4892.
Consentini, C. E., Souza, A. H., Sartori, R., Carvalho, P. D., Shaver, R. & Wiltbank, M. C. (2023). Relationships among total mixed ration nutritional components and reproductive performance in high-producing dairy herds. JDS Communications.
Davies, K. L., McKinnon, J. J. & Mutsvangwa, T. (2013). Effects of dietary ruminally degradable starch and ruminally degradable protein levels on urea recycling, microbial protein production, nitrogen balance, and duodenal nutrient flow in beef heifers fed low crude protein diets. Canadian Journal of Animal Science, 93(1): 123-136.
Desrosiers, A., Derbali, R. M., Hassine, S., Berdugo, J., Long, V., Lauzon, D. & Vallée-Bélisle, A. (2022). Programmable self-regulated molecular buffers for precise sustained drug delivery. Nature Communications, 13(1): 6504.
Elmhadi, M. E., Ali, D. K., Khogali, M. K. & Wang, H. (2022). Subacute ruminal acidosis in dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies. Animal Nutrition, 10: 148-155.
Erdman, R. A., Hemken, R. W. & Bull, L. S. (1982). Dietary sodium bicarbonate and magnesium oxide for early postpartum lactating dairy cows: effects of production, acid-based metabolism, and digestion. Journal of Dairy Science, 65(5): 712-731.
Erickson, P. S. & Kalscheur, K. F. (2020). Nutrition and feeding of dairy cattle. Animal Agriculture.
Fadaee, S., Danesh Mesgaran, M. & Vakili, A. (2021). In vitro Effect of the Inorganic Buffers in the Diets of Holstein Dairy Cow Varying in Forage: Concentrate Ratios on the Rumen Acid Load and Methane Emission. Iranian Journal of Applied Animal Science, 11(3): 485-496.
Farghaly, M. M., Hassan, E. H. & Abdo, S. G. (2019). Influence of sodium bicarbonate supplementation on nutrients digestibility, milk production, rumen fermentation and some blood parameters in sheep. Egyptian Journal of Animal Production, 56(2): 71-77.
Ferraretto, L. F., Shaver, R. D. & Bertics, S. J. (2012). Effect of dietary supplementation with live-cell yeast at two dosages on lactation performance, ruminal fermentation, and total-tract nutrient digestibility in dairy cows. Journal of Dairy Science, 95(7): 4017-4028.
Firkins, J. L. (2021). Invited Review: Advances in rumen efficiency. Applied Animal Science, 37(4): 388-403.
Giger-Reverdin, S., Rigalma, K., Desnoyers, M., Sauvant, D. & Duvaux-Ponter, C. (2014). Effect of concentrate level on feeding behavior and rumen and blood parameters in dairy goats: Relationships between behavioral and physiological parameters and effect of between-animal variability. Journal of Dairy Science, 97(7): 4367-4378.
Hailemariam, S., Zhao, S., He, Y. & Wang, J. (2021). Urea transport and hydrolysis in the rumen: A review. Animal Nutrition, 7(4): 989-996.
Ishaq, S. L., AlZahal, O., Walker, N. & McBride, B. (2017). An investigation into rumen fungal and protozoal diversity in three rumen fractions, during high-fiber or grain-induced sub-acute ruminal acidosis conditions, with or without active dry yeast supplementation. Frontiers in Microbiology, 8: 1943.
Jafarpour Boroujeni, M., Danesh Mesgaran, M., Vakili, A. R. & Naserian, A. A. (2016). In vitro ruminal acid load and methane emission responses to supplemented lactating dairy cow diets with inorganic compounds varying in buffering capacities. Iranian Journal of Applied Animal Science, 6(4): 769-775.
Javaid, A., Shahzad, M. A., Nisa, M. & Sarwar, M. (2011). Ruminal dynamics of ad libitum feeding in buffalo bulls receiving different level of rumen degradable protein. Livestock Science, 135(1): 98-102.
Kang, S. & Wanapat, M. (2013). Using plant source as a buffering agent to manipulating rumen fermentation in an in vitro gas production system. Asian-Australasian Journal of Animal Sciences, 26(10): 1424.
Kenters, N., Henderson, G., Jeyanathan, J., Kittelmann, S. & Janssen, P. H. (2011). Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium. Journal of Microbiological Methods, 84(1): 52-60.
Khorasani, G. R. & Kennelly, J. J. (2001). Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in late-lactation Holstein cows. Journal of Dairy Science, 84(7): 1707-1716.
Khorasani, O., Chaji, M. & Baghban, F. (2020). Comparison of the effect of sodium bicarbonate buffer with Megasphaera elsdenii as a rumen-consuming acid on growth performance, digestibility, rumen and blood parameters of lambs in high concentrate. Journal of Animal Science Research, 30(2): 85-99.
Khorasani, O., Chaji, M. & Baghban, F. (2021). Effect of chemical buffer and Megasphaera elsdenii-yeast on histomorphometry and histopathology of rumen and liver of Arabian fattening lambs fed with concentrated diets. Animal Production, 23(1): 47-59.
Kim, S. H. & Sung, H. G. (2022). Effects of Different Fiber Substrates on in Vitro Rumen Fermentation Characteristics and Rumen Microbial Community in Korean Native Goats and Hanwoo Steers. Fermentation, 8(11): 611.
Kirwan, S. F., Pierce, K. M., Serra, E., Gath, V., Rajauria, G. & Boland, T. M. (2022). Effect of supplementing grass silage-based diets with concentrate carbohydrate sources with different fermentation profiles on N metabolism of beef heifers fed to Maintenance. Ruminants, 2(2): 188-200.
Li Meng. M. & Hanigan, M. D. (2020). A revised representation of ruminal pH and digestive reparameterization of the Molly cow model. Journal of Dairy Science, 103(12): 11285-11299.
Ma, X., Zhou, W., Guo, T., Li, F., Li, F., Ran, T. & Guo, L. (2022). Effects of dietary barley starch contents on the performance, nutrient digestion, rumen fermentation, and bacterial community of fattening Hu sheep. Frontiers in Nutrition, 8: 1302.
Mahdavirad, N., Chaji, M., Bojarpour, M. & Dehghanbanadaky, M. (2021). Comparison of the effect of sodium bicarbonate, sodium sesquicarbonate, and zeolite as rumen buffers on apparent digestibility, growth performance, and rumen fermentation parameters of Arabi lambs. Tropical Animal Health and Production, 53(5): 465.
Maheri-Sis, N., Safaei, A. R., Mirzaei-Aghsaghali, A., Mirza-Aghazadeh, A. & Dastoori, M. R. (2007). Use of in vitro gas production technique to compare nutritive value of quackgrass and alfalfa for ruminants. Journal of Animal and Veterinary Advances, 6(12): 1351-1356.
Matthews, C., Crispie, F., Lewis, E., Reid, M., O’Toole, P. W. & Cotter, P. D. (2019). The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 10(2): 115-132.
Miller, M. D., Kokko, C., Ballard, C. S., Dann, H. M., Fustini, M., Palmonari, A. & Grant, R. J. (2021). Influence of fiber degradability of corn silage in diets with lower and higher fiber content on lactational performance, nutrient digestibility, and ruminal characteristics in lactating Holstein cows. Journal of Dairy Science, 104(2): 1728-1743.
Niepes, R. A. & Bestil, L. C. (2023). Nutrient digestibility of fibrous feedstuffs in high-concentrate diet with sodium-bicarbonate (NaHco3) addition in rumen-fistulated brahman bull. Online Journal of Animal and Feed Research, 13(4): 234-241.
Ramos, S. C., Jeong, C. D., Mamuad, L. L., Kim, S. H., Son, A. R., Miguel, M. A. & Lee, S. S. (2021). Enhanced ruminal fermentation parameters and altered rumen bacterial community composition by formulated rumen buffer agents fed to dairy cows with a high-concentrate diet. Agriculture, 11(6): 554.
Ramos, S. C., Kim, S. H., Jeong, C. D., Mamuad, L. L., Son, A. R., Kang, S. H. & Lee, S. S. (2022). Increasing buffering capacity enhances rumen fermentation characteristics and alters rumen microbiota composition of high-concentrate fed Hanwoo steers. Scientific Reports, 12(1): 20739.
Rogers, J. A. & Davis, C. L. (1982). Effects of intraruminal infusions of mineral salts on volatile fatty acid production in steers fed high-grain and high-roughage diets. Journal of Dairy Science, 65(6): 953-962.
Salfer, I. J., Morelli, M. C., Ying, Y., Allen, M. S. & Harvatine, K. J. (2018). The effects of source and concentration of dietary fiber, starch, and fatty acids on the daily patterns of feed intake, rumination, and rumen pH in dairy cows. Journal of Dairy Science, 101(12): 10911-10921.
Solorzano, L. C., Armentano, L. E., Grummer, R. R. & Dentine, M. R. (1989). Effects of sodium bicarbonate or sodium sesquicarbonate on lactating Holsteins fed a high grain diet. Journal of Dairy Science, 72(2): 453-461.
Sony, C., Ramos, S. C, Jeong, C. D., Mamuad, L. L., Kim, S.H., Son, A.R., Miguel, M.A., Islam, M., Cho, Y. I. & Lee, S. S. (2021). Enhanced ruminal fermentation parameters and altered rumen bacterial community composition by formulated rumen buffer agents fed to dairy cows with a high-concentrate diet. Agriculture, Jun 17; 11(6):554.
Stokes, M. R., Vandemark, L. L. & Bull, L. S. (1986). Effects of sodium bicarbonate, magnesium oxide, and a commercial buffer mixture in early lactation cows fed hay crop silage. Journal of Dairy Science, 69(6): 1595-1603.
Sultan, J. I., Javaid, A., Nadeem, M., Akhtar, M. Z. & Mustafa, M. I. (2009). Effect of varying ruminally degradable to ruminally undegradable protein ratio on nutrient intake, digestibility and N metabolism in Nili Ravi buffalo calves (Bubalus bubalis). Livestock Science, 122(2-3): 130-133.
Tseu, R. J., Paucar, L. L. C., Perna Junior, F., Carvalho, R. F., Nogueira, R. G. S., Cassiano, E. C. O. & Rodrigues, P. H. M. (2022). Effect of exogenous enzymes on nutrient digestibility and ruminal fermentation of Holstein cows. Iranian Journal of Applied Animal Science, 12(3): 447-459.
Underwood, W. J., Blauwiekel, R., Delano, M. L., Gillesby, R., Mischler, S. A. & Schoell, A. (2015). Biology and diseases of ruminants (sheep, goats, and cattle). In Laboratory animal medicine (pp. 623-694). Academic Press.
Wang, R., Wang, M., Ungerfeld, E. M., Zhang, X. M., Long, D. L., Mao, H. X. & Tan, Z. L. (2018). Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet. Journal of Dairy Science, 101(11): 9789-9799.
West, J. W., Coppock, C. E., Nave, D. H., Labore, J. M., Greene, L. W. & Odom, T. W. (1987). Effects of potassium carbonate and sodium bicarbonate on rumen function in lactating Holstein cows. Journal of Dairy Science, 70(1): 81-90.
Wróbel, B., Nowak, J., Fabiszewska, A., Paszkiewicz-Jasińska, A. & Przystupa, W. (2023). DM Losses in Silages Resulting from Epiphytic Microbiota Activity—A Comprehensive Study. Agronomy, 13(2): 450.
Zali, A., Nasrollahi, S. M. & Khodabandelo, S. (2019). Effects of two new formulas of dietary buffers with a high buffering capacity containing Na or K on performance and metabolism of mid-lactation dairy cows. Preventive Veterinary Medicine, 163: 87-92.
Zhou, R., Wu, J., Lang, X., Liu, L., Casper, D. P., Wang, C. & Wei, S. (2020). Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. Journal of Dairy Science, 103(3): 2303-2314. | ||
آمار تعداد مشاهده مقاله: 124 تعداد دریافت فایل اصل مقاله: 123 |