| تعداد نشریات | 13 |
| تعداد شمارهها | 658 |
| تعداد مقالات | 6,859 |
| تعداد مشاهده مقاله | 10,001,173 |
| تعداد دریافت فایل اصل مقاله | 9,301,895 |
اثر قارچ ترافل سیاه تابستانی (Tuber aestivum) بر فعالیت آنزیمهای آنتیاکسیدانی بلندمازو (Quercus castaneifolia) و پالونیا (Paulownia fortunei) تحت تنش آبی | ||
| پژوهشهای تولید گیاهی | ||
| دوره 32، شماره 3، مهر 1404، صفحه 207-226 اصل مقاله (1.31 M) | ||
| نوع مقاله: مقاله کامل علمی پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22069/jopp.2024.22779.3187 | ||
| نویسندگان | ||
| پروین باقری فر1؛ سید محمد واعظ موسوی* 2؛ محمد حسین ارزانش3؛ مسعود توحیدفر4؛ حجت اله ربانی نسب5 | ||
| 1دانشجوی دکتری جنگلشناسی و اکولوژی جنگل، گروه جنگلشناسی و اکولوژی جنگل، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
| 2نویسنده مسئول، استادیار گروه جنگلشناسی و اکولوژی جنگل، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
| 3استادیار اداره بخش خاک مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران. | ||
| 4استاد گروه زیستشناسی سلولی و ملکولی، دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران. | ||
| 5استادیار اداره تحقیقات گیاهپزشکی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران | ||
| چکیده | ||
| سابقه و هدف: تغییرات آبوهوایی میتواند اثرات مستقیم و غیرمستقیم بر بومسازگانهای طبیعی داشته باشد. درک این اثرات برای مدیریت مؤثر منابع محیطی و برنامهریزی حفاظتی آینده ضروری است. بدنبال این تغییرات، تنش آبی بهعنوان چالش اصلی برای بوم-سازگان طبیعی شناخته شده است. تأثیر قارچهای میکوریز بر روی گیاهان میزبان بهطور گستردهای برای کاهش اثرات نامطلوب تنش آبی مورد مطالعه قرار گرفتهاند. مطالعه حاضر اثر قارچ اکتومیکوریز ترافل سیاه تابستانی (Tuber aestivum) بر فعالیت آنزیمهای آنتیاکسیدانی برگهای گیاه پالونیا فورتونی و بلوط بلندمازو را در شرایط تنش آبی مورد ارزیابی قرار داد. مواد و روشها: این آزمایش در قالب طرح کاملاً تصادفی در دو گروه تلقیح شده با قارچ و شاهد (بدون تلقیح) انجام شد. اسپان قارچ T. aestivum به صورت بسته تجاری از شرکت پویا فنآوران زیستی توسکا در ایران تهیه گردید. برای تلقیح نهالها، طبق دستورالعمل شرکت سازنده، ماده تلقیح پودری در آب مقطر به حالت تعلیق درآمده است. طی سه مرحله تلقیح به خاک اطراف نهال-ها به ازای هر گلدان یک گرم با غلظت 108 اضافه شد. تشکیل همزیستی بین قارچ و گیاه میزبان با استفاده از روشهای چشمی و روش رنگآمیزی ارزیابی شد. تنش آبی با توقف آبیاری تا رسیدن نهالهای تلقیح شده به نقطه پژمردگی اعمال شد، در حالی که نهالهای شاهد ظرفیت زراعی کامل را در این مدت حفظ کردند. پس از اعمال تنش، از اسپکتروفتومتر برای اندازهگیری فعالیت آنزیم-های آنتیاکسیدانی استفاده شد. یافتهها: نتایج نشان داد که تفاوت معنیداری در سطح 95 درصد در فعالیت کاتالاز در پالونیا و در سطح 99 درصد در فعالیت پراکسیداز در بلندمازو و پالونیا وجود دارد. طول مدت تنش آبی در پالونیا 10 روز و در بلندمازو 24 روز بود که بلندمازو مقاومت بیشتری نسبت به پالونیا نشان داد. علاوه بر وجود قارچ T. aestivum، این مقاومت به تنش ممکن است به دلیل سامانه ریشه عمیقتر بلندمازو باشد که جذب آب و مواد غذایی را افزایش میدهد. نتیجهگیری: تلقیح میکوریزی با T. aestivum میتواند بهعنوان یک محرک زیستی و یک عامل محافظ سازگار با محیط زیست در برابر تنش آبی در نهالهای بلندمازو و پالونیا عمل کند. این کاهش اثر تنش به نظر میرسد در اثر بیشتر شدن فعالیت آنزیم آنتی-اکسیدانی گیاهان تحت تنش آبی باشد. با این حال، مسائل متعددی در مورد تعامل بین گیاهان میزبان و قارچهای اکتومیکوریز، بهویژه ترافل سیاه تابستانی وجود دارد. این امر مستلزم مطالعات بیشتر برای روشن شدن نقش قارچهای اکتومیکوریز در گونههای مختلف درختی است که تنش آبی را تجربه میکنند. | ||
| کلیدواژهها | ||
| اکتومیکوریز؛ پراکسیداز؛ تنش اکسیداتیو؛ کاتالاز | ||
| مراجع | ||
|
1.Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene. Ecosphere, 6(8), 1-55.
2.Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene. Ecosphere, 6(8), 1-55.
3.Chandrasekaran, M., & Paramasivan, M. (2022). Arbuscular mycorrhizal fungi and antioxidant enzymes in ameliorating drought stress: a meta-analysis. Plant and Soil, 480(1), 295-303.
4.Rennenberg, H., Loreto, F., Polle, A., Brilli, F., Fares, S., Beniwal, R. S., & Gessler, A. J. P. B. (2006). Physiological responses of forest trees to heat and drought. Plant Biology, 8, 556-571.
5.Bray, E. A. (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. Journal of experimental botany, 55(407), 2331-2341.
6.Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13, 309-317.
7.Hasanuzzaman, M., Bhuyan, M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A., & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384.
8.Mansoor, S., Ali Wani, O., Lone, J. K., Manhas, S., Kour, N., Alam, P., Ahmad A., & Ahmad, P. (2022). Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2), 225.
9.Pammi, S. S., Suresh, B., & Giri, A. (2023). Antioxidant potential of medicinal plants. Journal of Crop Science and Biotechnology, 26(1), 13-26.
10.Foyer, C. H. (1996). Oxygen processing in photosynthesis. Biochemical Society Transactions, 24(2), 427-433.
11.Seckin, B., Turkan, I., Sekmen, A. H., & Ozfidan, C. (2010). The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 69(1), 76-85.
12.Cesur, A., & Tabur, S. (2011). Chromotoxic effects of exogenous hydrogen peroxide (H 2 O 2) in barley seeds exposed to salt stress. Acta physiologiae plantarum, 33, 705-709.
13.Cook, D., Fowler, S., Fiehn, O., & Thomashow, M. F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences, 101(42), 15243-15248.
14.Hsu, Y. T., & Kao, C. H. (2007). Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. Plant and Soil, 300, 137-147.
15.Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331-1341.
16.Pan, Y., Wu, L. J., & Yu, Z. L. (2006). Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation, 49, 157-165.
17.Cairney, J. W. (2012). Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biology and Biochemistry, 47, 198-208.
18.Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis. Academic Press.
19.Tedersoo, L., Bahram, M., & Zobel, M. (2020). How mycorrhizal associations drive plant population and community biology. Science, 367(6480), eaba1223.
20.Trappe, J. M. (2009). Diversity, ecology, and conservation of truffle fungi in forests of the Pacific Northwest (Vol. 772). US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
21.Hall, I., Brown, G., & Zambonelli, A. (2007). Taming the truffle: The history, lore, and science of the ultimate mushroom. Timber Press.
22.Benucci, G. M. N., Raggi, L., Albertini, E., Grebenc, T., Bencivenga, M., Falcinelli, M., & Di Massimo, G. (2011). Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: composition, host influence and species replacement. FEMS Microbiology Ecology, 76(1), 170-184.
23.Zarea, M. J., Hajinia, S., Karimi, N., Goltapeh, E. M., Rejali, F., & Varma, A. (2012). Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry, 45, 139-146.
24.Liu, Y., Lu, J., Cui, L., Tang, Z., Ci, D., Zou, X., Zhang, X., Yu, X., Wang, Y., & Si, T. (2023). The multifaceted roles of Arbuscular Mycorrhizal Fungi in peanut responses to salt, drought, and cold stress. BMC Plant Biology, 23(1), 36.
25.Aalipour, H., Nikbakht, A., Etemadi, N., Rejali, F., & Soleimani, M. (2020). Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Scientia Horticulturae, 261, 108923.
26.Chen, X., Aili, Y., Ma, X., Wang, H., & Dawuti, M. (2024). Mycorrhizal fungal colonization promotes apparent growth and physiology of Alhagi sparsifolia seedlings under salt or drought stress at vulnerable developmental stage. Plant Growth Regulation, 102(2), 267-278.
27.Bahmani, M., Naghdi, R., & Kartoolinejad, D. (2018). Milkweed seedlings tolerance against water stress: Comparison of inoculations with Rhizophagus irregularis and Pseudomonas putida. Environmental Technology and Innovation, 10, 111-121.
28.Sabeti, H. (1993). Forests, trees, and shrubs of Iran. Yazd University Press.
29.Mohammadnezhad Kiasari, S. (2017). Evaluation of the various methods of cultural operation (thinning) in the low land forestations (Hardwood and softwood) of Mazandaran province based on ecological capability (Case study: The forestations of Neka area). Final report of project, Mazandaran Agricultural and Natural Resources Research Center, Iran. [In Persian]
30.Cao, X., Zhai, X., Xu, E., Zhao, Z., & Fan, G. (2020). Genome-wide identification of candidate genes related to disease resistance and high biomass in tetraploid Paulownia. Acta Physiologiae Plantarum, 42(1), 1-10.
31.Rodríguez-Seoane, P., Díaz-Reinoso, B., & Domínguez, H. (2022). Supercritical CO₂ extraction of antioxidants from Paulownia elongata x fortunei leaves. Biomass Conversion and Biorefinery, 1-9. 32.Ayan, S., Sıvacıoğlu, A., & Bilir, N. (2006). Growth variation of Paulownia Sieb. and Zucc. species and origins at the nursery stage in Kastamonu-Turkey.
33.García-Morote, F. A., López-Serrano, F. R., Martínez-García, E., Andrés-Abellán, M., Dadi, T., Candel, D., Rubio, E., & Lucas-Borja, M. E. (2014). Stem biomass production of Paulownia elongata × P. fortunei under low irrigation in a semi-arid environment. Forests, 5(10), 2505-2520.
34.Liu, R., Dong, Y., Fan, G., Zhao, Z., Deng, M., Cao, X., & Niu, S. (2013). Discovery of genes related to witches broom disease in Paulownia tomentosa × Paulownia fortunei by a de novo assembled transcriptome. PLoS One, 8(11), e80238.
35.Popova, T. P., & Baykov, B. D. (2013). Antimicrobial activity of aqueous extracts of leaves and silage from Paulownia elongata. American Journal of Biological, Chemical and Pharmaceutical Sciences, 1(2), 8-15.
36.Oliferchuk, V. P., & Fedorovych, D. V. (2019). Application of mycorrhizal fungus Tuber melanosporum to stimulate the growth and development of soybean and spring barley. Faktori Eksperimental'noi Evolucii Organizmiv, 24, 133-138.
37.Benucci, G. M. N., Bonito, G., Falini, L. B., & Bencivenga, M. (2012). Mycorrhization of Pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad. and Tuber borchii Vittad. Mycorrhiza, 22, 383-392.
38.Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-IN118.
39.Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489-500.
40.Eberman, R., & Strich, K. (1982). Peroxidase and amylase isoenzymes in the sapwood and heartwood of trees. Phytochemistry, 21, 2401-2402.
41.Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126.
42.Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases: Methods in enzymology. Academic Press, 2, 764-775.
43.Korury, S., Teimori, M., Khoshnevis, M., Salahi, P., Matinizadeh, M., Moraghebi, F., Maghooli, F., & Shirvani, A. (1999). Evaluation of pollution damage from the Persian Gulf War on mangroves and coastal vegetation. Pajouhesh and Sazandegi, 43(12), 102-107.
44.Zare-Maivan, H., Lotfi Fard, F., & Tayebi, Z. (2015). Stress response of dominant forest tree species south of the Caspian Sea in relation to soil from coast to upland. Journal of the Persian Gulf, 6(22), 1-12.
45.Hansberg, W., Salas-Lizana, R., & Domínguez, L. (2012). Fungal catalases: Function, phylogenetic origin and structure. Archives of Biochemistry and Biophysics, 525(2), 170-180.
46.Shah, N., Usvalampi, A., Chaudhary, S., Seppänen-Laakso, T., Marathe, S., Bankar, S., & Shamekh, S. (2020). An investigation on changes in composition and antioxidant potential of mature and immature summer truffle (Tuber aestivum). European Food Research and Technology, 246, 723-731.
48.Ou, T., Zhang, M., Gao, H., Wang, F., Xu, W., Liu, X., Wang, L., Wang, R., & Xie, J. (2023). Study on the potential for stimulating mulberry growth and drought tolerance of plant growth-promoting fungi. International Journal of Molecular Sciences, 24(4), 4090. 49.Abbaspour, H., Saeidi-Sar, S., Afshari, H., & Abdel-Wahhab, M. A. (2012). Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Journal of Plant Physiology, 169(7), 704-709.
50.Zhang, X., Ye, L., Kang, Z., Zou, J., & Li, X. (2019). Mycorrhization of Quercus acutissima with Chinese black truffle significantly altered the host physiology and root-associated microbiomes. PeerJ, 7, e6421.
51.Huang, Y., Zou, J., Kang, Z., Zhang, X., Penttinen, P., & Li, X. (2021). Effects of truffle inoculation on a nursery culture substrate environment and seedling of Carya illinoinensis. Fungal Biology, 125(7), 576-584.
52.Yin, D., Qi, J., Deng, J., & Deng, X. (2017). Effects of ectomycorrhizal cooperating with exogenous calcium on Pinus sylvestris var. mongolica growth. China Environmental Science, 37(6), 2295-2304. 53.Roldán, A., Díaz-Vivancos, P., Hernández, J. A., Carrasco, L., & Caravaca, F. (2008). Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil. Journal of Plant Physiology, 165(7), 715-722.
54.Pritsch, K., & Garbaye, J. (2011). Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Annals of Forest Science, 68, 25-32.
55.Ruiz, J. M., Baghour, M., & Romero, L. (2000). Efficiency of the different genotypes of tomato in relation to foliar content of Fe and the response of some bioindicators. Journal of Plant Nutrition, 23(11-12), 1777-1786.
56.Sun, B., Jing, Y., Chen, K., Song, L., Chen, F., & Zhang, L. (2007). Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). Journal of Plant Physiology, 164(5), 536-543.
57.Saravjeet, G., & Narendra, T. (2010). Reactive oxygen species and antioxidant machinery in a biotic stress tolerance in crop plants. Annals Review, Plant Physiology and Biochemistry, 3, 1-22.
58.Rampino, P., Pataleo, S., Gerardi, C., Mita, G., & Perrotta, C. (2006). Drought stress response in wheat: Physiological and molecular analysis of resistant and sensitive genotypes. Plant, Cell & Environment, 29(12), 2143-2152.
59.Benhiba, L., Fouad, M. O., Essahibi, A., Ghoulam, C., & Qaddoury, A. (2015). Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought. Trees, 29, 1725-1733. | ||
|
آمار تعداد مشاهده مقاله: 936 تعداد دریافت فایل اصل مقاله: 42 |
||