
تعداد نشریات | 13 |
تعداد شمارهها | 631 |
تعداد مقالات | 6,584 |
تعداد مشاهده مقاله | 8,927,066 |
تعداد دریافت فایل اصل مقاله | 8,457,308 |
اثرات افزودن مکمل لیزوفسفولیپید در شیر بر عملکرد رشد و ظرفیت دفاع آنتیاکسیدانی گوسالههای شیرخوار هلشتاین | ||
نشریه پژوهش در نشخوار کنندگان | ||
دوره 12، شماره 4، دی 1403، صفحه 93-108 اصل مقاله (752.71 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejrr.2024.22229.1944 | ||
نویسندگان | ||
میلاد زینعلی1؛ منوچهر سوری* 2 | ||
1دانشجوی کارشناسیارشد، گروه مهندسی علوم دامی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران | ||
2دانشیار ، گروه مهندسی علوم دامی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران، | ||
چکیده | ||
چکیده سابقه و هدف: لیزوفسفولیپیدها جزء ضروری سلولها میباشند و در تامین انرژی مورد نیاز سلولهای اپیتلیال روده دارای نقش اصلی هستند. گوسالههای شیرخوار به دلیل ترشح پایین نمکهای صفراوی، حداکثر استفاده را از چربی جیره نمیکنند، بنابراین افزودن امولسیون کنندههای چربی در تغذیه گوسالهها برای بهبود کارایی خوراک ضروری بنظر میرسد. لیزوفسفولیپید یک امولسیفایر ضد التهابی است که با بهبود هضم ظاهری چربی کل جیره و بهبود کارایی خوراک در گاوهای شیری مرتبط است. با این حال، مشخص نیست که آیا لیزوفسفولیپید عملکرد را در گوسالههای شیرخوار بهبود میبخشد . علاوه بر این، از آنجایی که بسیاری از جایگزینهای شیر معمولی از چربیهای گیاهی (مانند روغن پالم) استفاده میکنند، جذب مواد مغذی و امتیاز مدفوع ممکن است در گوسالههای شیرخوار تحت تاثیر قرار گیرد. پژوهش حاضر با هدف بررسی اثرات استفاده از مکمل لیزوفسفولیپید در شیر بر عملکرد رشد، ظرفیت دفاع آنتیاکسیدانی و امتیاز مدفوع گوسالههای شیرخوار انجام شد. مواد و روشها: در آزمایش حاضر 30 راس گوساله هلشتاین، از 3 روز بعد از تولد بطور تصادفی در 3 گروه آزمایشی تقسیم شدند و در یک دوره 75 روزه مورد بررسی قرار گرفتند.گوسالهها بعد از تولد طی 3 روز متوالی با آغوز تغذیه شده و بعد از آن تا پایان دوره شیرخواری روزانه در دو نوبت به مقدار یکسان با شیر تغذیه شدند (4 لیتر تا 7 روزگی، 6 لیتر تا 14 روزگی، 8 لیتر تا 50 روزگی، 6 لیتر تا 60 روزگی، 4 لیتر تا 70 روزگی و 3 لیتر تا 75 روزگی). تیمارهای آزمایشی شامل گروه اول (شاهد، جیره آغازین و شیر بدون لیزوفسفولیپید)، گروه دوم (جیره آغازین و شیرحاوی 2 گرم لیزوفسفولیپید در روز) و گروه سوم (جیره آغازین و شیرحاوی 4 گرم لیزوفسفولیپید در روز) به مدت 75 روز مورد استفاده قرار گرفتند. خوراک مصرفی به طور روزانه و تغییرات وزن زنده هر دو هفته یکبار اندازهگیری شد. مدفوع گوسالهها در روزهای 1، 30 و60 آزمایش ارزیابی و امتیازدهی شد. خونگیری در ابتدا و انتهای آزمایش از طریق رگ وداج صورت گرفت. 9 میلی لیتر از خون تازه در لولههای ونوجکت در مجاورت یخ به آزمایشگاه فرستاده شد. در آزمایشگاه نمونه-های خون به مدت 15 دقیقه با سرعت 2500 دور در دقیقه سانتریفیوژ شدند و پلاسما و سرم آنها جدا گردید. نمونههای پلاسما و سرم تا زمان اندازهگیری پارامترهای مورد نظر در دمای 20- درجه سانتی گراد نگهداری شدند. بعد از پایان دوره آزمایش متابولیتهای خونی توسط دستگاه اتوآنالایزر اندازه گیری شدند. یافتهها: نتایج نشان داد که مصرف روزانه 4 گرم لیزوفسفولیپید بدون تأثیر بر میزان مصرف خوراک، سبب افزایش وزن زنده شد (05/0>P). مکمل 4 گرم لیزوفسفولیپید فعالیت آنزیمهای سوپراکسیددیسموتاز و گلوتاتیونپراکسیداز را در پلاسمای خون نسبت به تیمار شاهد افزایش داد. امتیاز مدفوع گوسالههای تغذیه شده با شیر حاوی ۲ گرم مکمل لیزوفسفولیپید در سن ۳۰ روزگی و گوسالههای تغذیه شده با شیر حاوی 4 گرم مکمل لیزوفسفولیپید در سن ۶۰ روزگی به طور معنیداری بالاتر از سایر گروههای آزمایشی بود. نتیجهگیری: بطورکلی نتایج بدست آمده نشان داد که استفاده از مکمل لیزوفسفولیپید در شیر روزانه میتواند عملکرد رشد در گوسالههای شیرخوار، سلامت مدفوع و ظرفیت دفاع آنتیاکسیدانی را بهبود بخشد. | ||
کلیدواژهها | ||
مالون دی آلدئید؛ امتیاز مدفوع؛ ظرفیت کل آنتیاکسیدانی؛ افزایش وزن روزانه | ||
مراجع | ||
Berends, H., Van Laar, H., Leal, L.N., Gerrits, W.J.J. & Martín-Tereso, J. (2020). Effects of exchanging lactose for fat in milk replacer on ad libitum feed intake and growth performance in dairy calves. Journal of Dairy Science, 103(5), 4275-4287.
Boontiam, W., Jung, B. & Kim, Y.Y. (2017). Effects of lysophospholipid supplementation to lower nutrient diets on growth performance, intestinal morphology, and blood metabolites in broiler chickens. Poultry Science, 96(3), 593-601.
Cai, Z., Feng, S., Xiang, X., Mai, K. & Ai, Q. (2016). Effects of dietary phospholipid on lipase activity, antioxidant capacity and lipid metabolism-related gene expression in large yellow croaker larvae (Larimichthys crocea). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 201, 46-52.
Chen, G.J., Zhang, R., Wu, J.H., Shang, Y.S., Li, X.D., Qiong, M., Wang, P.C., Li, S.G., Gao, Y.H. & Xiong, X.Q. (2020). Effects of soybean lecithin supplementation on growth performance, serum metabolites, ruminal fermentation and microbial flora of beef steers. Livestock Science, 240, 104121.
Chen, H., Wang, C., Huasai, S. & Chen, A. (2021). Effects of dietary forage to concentrate ratio on nutrient digestibility, ruminal fermentation and rumen bacterial composition in Angus cows. Scientific Reports, 11(1), 17023.
Dai, Y.J., Cao, X.F., Zhang, D.D., Li, X.F., Liu, W.B. & Jiang, G.Z. (2019). Chronic inflammation is a key to inducing liver injury in blunt snout bream (Megalobrama amblycephala) fed with high-fat diet. Developmental & Comparative Immunology, 97, 28-37.
Davis, C.L. & Drackley, J.K. (1998). The Development, Nutrition, and Management of the Young Calf. Iowa State University Press.
De Paula, M.R., Oltramari, C.E., Silva, J.D., Gallo, M.D.C., Mourão, G.B. & Bittar, C.M.M. (2017). Intensive liquid feeding of dairy calves with a medium crude protein milk replacer: Effects on performance, rumen, and blood parameters. Journal of Dairy Science, 100(6), 4448-4456.
Ding, T., Xu, N., Liu, Y., Du, J., Xiang, X., Xu, D., Liu, Q., Yin, Z., Li, J., Mai, K. & Ai, Q. (2020). Effect of dietary bile acid (BA) on the growth performance, body composition, antioxidant responses and expression of lipid metabolism-related genes of juvenile large yellow croaker (Larimichthys crocea) fed high-lipid diets. Aquaculture, 518, 734768.
Field, M. (2003). Intestinal ion transport and the pathophysiology of diarrhea. The Journal of Clinical Investigation, 111(7), 931-943.
Gallo, S.B., Brochado, T., Brochine, L., Passareli, D., Costa, S.F., Bueno, I.D.S., Balieiro, J.D.C., Neto, R.F. & Tedeschi, L.O. (2019). Effect of biosurfactant added in two different oil source diets on lamb performance and ruminal and blood parameters. Livestock Science, 226, 66-72.
Golding, M. & Wooster, T.J. (2010). The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid & Interface Science, 15(1-2), 90-101.
Haetinger, V.S., Dalmoro, Y.K., Godoy, G.L., Lang, M.B., De Souza, O.F., Aristimunha, P. & Stefanello, C. (2021). Optimizing cost, growth performance, and nutrient absorption with a bio-emulsifier based on lysophospholipids for broiler chickens. Poultry Science, 100(4), 101025.
Hosseini, S.M., Nourmohammadi, R., Nazarizadeh, H. & Latshaw, J.D. (2018). Effects of lysolecithin and xylanase supplementation on the growth performance, nutrient digestibility and lipogenic gene expression in broilers fed low‐energy wheat‐based diets. Journal of Animal Physiology and Animal Nutrition, 102(6), 1564-1573.
Huang, Z., Brennan, C., Zhao, H., Guan, W., Mohan, M.S., Stipkovits, L., Zheng, H., Liu, J. & Kulasiri, D. (2020). Milk phospholipid antioxidant activity and digestibility: Kinetics of fatty acids and choline release. Journal of Functional Foods, 68, 103865.
Huff, J.S., Waugh, R.K. & Wise, G.H. (1951). Effect of glycerol-mono-stearate on fat absorption, growth and health of calves. Journal of Dairy Science, 34(11), 1056-1063.
Innis, S.M., Davidson, A.G.F., Melynk, S. & James, S.J. (2007). Choline-related supplements improve abnormal plasma methionine-homocysteine metabolites and glutathione status in children with cystic fibrosis. The American Journal of Clinical Nutrition, 85(3), 702-708.
Jacquier, V., Nelson, A., Jlali, M., Rhayat, L., Brinch, K.S. & Devillard, E. (2019). Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poultry Science, 98(6), 2548-2554.
Jenkins, T.C., Gimenez, T. & Cross, D.L. (1989). Influence of phospholipids on ruminal fermentation in vitro and on nutrient digestion and serum lipids in sheep. Journal of Animal Science, 67(2), 529-537.
Jiao, P., Hu, G., Liang, G., Chen, M., An, N., Wang, Z., Liu, H., Xing, H. & Xie, X. (2021). Dietary supplementation with Macleaya cordata extract inclusion affects growth performance, rumen fermentation, bacterial communities, and immune responses of weaned lambs. Animal Feed Science and Technology, 282, 115127.
Jones, C. & Heinrichs, J. (2017). Feeding the newborn dairy calf. Pennsylvania State University Cooperative Extension.
Kastelic, J., Bentley, O.G. & Phillips, P.H. (1950). Studies on growth and survival of calves fed semi-synthetic milks from birth. Journal of Dairy Science, 33(10), 725-36.
Khan, M.A., Bach, A., Weary, D.M. & Von Keyserlingk, M.A.G. (2016). Invited review: Transitioning from milk to solid feed in dairy heifers. Journal of Dairy Science, 99(2), 885-902.
Khan, M. A., Lee, H. J., Lee, W. S., Kim, H. S., Kim, S. B., Ki, K. S. & Choi, Y. J. (2007). Starch source evaluation in calf starter: I. Feed consumption, body weight gain, structural growth, and blood metabolites in Holstein calves. Journal of Dairy Science, 90(11), 5259-5268.
Le Huerou-luron, I., Guilloteau, P., Wicker-Planquart, C., Chayvialle, J.A., Burton, J., Mouats, A., Toullec, R. & Puigserver, A. (1992). Gastric and pancreatic enzyme activities and their relationship with some gut regulatory peptides during postnatal development and weaning in calves. The Journal of Nutrition, 122(7), 1434-1445.
Lee, C., Morris, D.L., Copelin, J.E., Hettick, J.M. & Kwon, I.H. (2019). Effects of lysophospholipids on short-term production, nitrogen utilization, and rumen fermentation and bacterial population in lactating dairy cows. Journal of Dairy Science, 102(4), 3110-3120.
Li, B., Li, Z., Sun, Y., Wang, S., Huang, B. & Wang, J. (2019). Effects of dietary lysolecithin (LPC) on growth, apparent digestibility of nutrient and lipid metabolism in juvenile turbot Scophthalmus maximus L. Aquaculture and Fisheries, 4(2), 61-66.
Marin, D.E., Pistol, G.C., Gras, M., Palade, M. & Taranu, I. (2018). A comparison between the effects of ochratoxin A and aristolochic acid on the inflammation and oxidative stress in the liver and kidney of weanling piglets. Naunyn-Schmiedeberg's Archives of Pharmacology, 391(10), 1147-1156.
McFadden, J.W. (2019). Dietary lecithin supplementation in dairy cattle. Pages 1–11 in Cornell Nutr. Conf. Cornell Univ., Ithaca, NY
Mehta, A.K., Arora, N., Gaur, S.N. & Singh, B.P. (2009). Choline supplementation reduces oxidative stress in mouse models of allergic airway disease. European Journal of Clinical Investigation, 39(10), 934-941.
Qiu, Y., Liu, S., Hou, L., Li, K., Wang, L., Gao, K., Yang, X. & Jiang, Z. (2021). Supplemental choline modulates growth performance and gut inflammation by altering the gut microbiota and lipid metabolism in weaned piglets. The Journal of Nutrition, 151(1), 20-29.
Reis, M.E., Toledo, A.F.D., da Silva, A.P., Poczynek, M., Fioruci, E.A., Cantor, M.C., Greco, L. & Bittar, C.M.M. (2021). Supplementation of lysolecithin in milk replacer for Holstein dairy calves: Effects on growth performance, health, and metabolites. Journal of Dairy Science, 104(5), 5457-5466.
Roy, A., Haldar, S., Mondal, S. & Ghosh, T.K. (2010). Effects of supplemental exogenous emulsifier on performance, nutrient metabolism, and serum lipid profile in broiler chickens. Veterinary Medicine International, DOI: 10.4061/2010/262604
Siyal, F.A., El-Hack, M.E.A., Alagawany, M., Wang, C., Wan, X., He, J., Wang, M., Zhang, L., Zhong, X., Wang, T. & Kuldeep, D. (2017). Effect of soy lecithin on growth performance, nutrient digestibility and hepatic antioxidant parameters of broiler chickens. International Journal of Pharmacology, 13(4), 396-402.
Song, W., Yang, J., Hwang, I., Cho, S. & Choi, N. (2015). Effect of dietary Lysophospholipid (LIPIDOLTM) supplementation on the improvement of forage usage and growth performance in Hanwoo heifer. Journal of The Korean Society of Grassland and Forage Science, 35(3), 232-237.
Song, Z., Zhou, Z., Chen, T., Hill, D., Kang, J., Barve, S. & McClain, C. (2003). S-adenosylmethionine (SAMe) protects against acute alcohol induced hepatotoxicity in mice. The Journal of Nutritional Biochemistry, 14(10), 591-597.
Sordillo, L.M. (2013). Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Veterinary Medicine International,
Sun, H.Y. & Kim, I.H. (2019). Evaluation of an emulsifier blend on growth performance, nutrient digestibility, blood lipid profiles, and fecal microbial in growing pigs fed low energy density diet. Livestock Science, 227, 55-59.
Taghavizadeh, M., Shekarabi, S.P.H., Mehrgan, M.S. & Islami, H.R. (2020). Efficacy of dietary lysophospholipids (Lipidol™) on growth performance, serum immuno-biochemical parameters, and the expression of immune and antioxidant-related genes in rainbow trout (Oncorhynchus mykiss). Aquaculture, 525, 735315.
Thornsberry, R.M., Wood, D., Kertz, A.F. & Hutcheson, D. (2016). Alternative ingredients in calf milk replacer: A review for bovine practitioners. The Bovine Practitioner, 65-88.
Toullec, R. & Guilloteau, P. (1989). Research into the digestive physiology of the milk-fed calf. In Symposium on the occasion of the retirement of Dr. Ir EJ van Weerden. Pudoc.
Treede, I., Braun, A., Sparla, R., Kuhnel, M., Giese, T., Turner, J.R., Anes, E., Kulaksiz, H., Füllekrug, J., Stremmel, W. & Griffiths, G. (2007). Anti-inflammatory effects of phosphatidylcholine. Journal of Biological Chemistry, 282(37), 27155-27164.
Zhang, M., Bai, H., Zhao, Y., Wang, R., Li, G., Zhang, G. & Zhang, Y. (2022). Effects of Dietary Lysophospholipid Inclusion on the Growth Performance, Nutrient Digestibility, Nitrogen Utilization, and Blood Metabolites of Finishing Beef Cattle. Antioxidants, 11(8), 1486. | ||
آمار تعداد مشاهده مقاله: 164 تعداد دریافت فایل اصل مقاله: 235 |