
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,489 |
تعداد مشاهده مقاله | 8,608,188 |
تعداد دریافت فایل اصل مقاله | 8,199,890 |
تأثیر مدیریت تلفیقی چالکود بر برخی ویژگیهای شیمیایی و زیستی خاک | ||
مجله مدیریت خاک و تولید پایدار | ||
مقاله 4، دوره 14، شماره 3، مهر 1403، صفحه 77-98 اصل مقاله (478.88 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejsms.2024.21760.2120 | ||
نویسندگان | ||
زینب عباسی کاروانه1؛ فرانک رنجبر* 2؛ علی بهشتی آل آقا3؛ روح الله شریفی4؛ حمیدرضا چقازردی5 | ||
1دانشآموخته کارشناسیارشد، گروه علوم و مهندسی خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران. | ||
2استادیار، گروه علوم و مهندسی خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران. | ||
3دانشیار، گروه علوم و مهندسی خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران. | ||
4استادیار، گروه گیاهپزشکی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه،ایران. | ||
5استادیار گروه مهندسی ژنتیک و تولید گیاهی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران. | ||
چکیده | ||
سابقه و هدف: مدیریت پایدار حاصلخیزی خاک یکی از مؤلفههای مهم مدیریت خاک در راستای کشاورزی پایدار است که آگاهی از آن از طریق سنجش ویژگیهای شیمیایی و زیستی امکانپذیر میباشد. بر این اساس، این پژوهش با هدف بررسی تأثیر چالکود درختان میوه با تیمارهای تلفیقی مختلف از کودهای آلی، شیمیایی و زیستی بر برخی ویژگیهای شیمیایی و زیستی خاک انجام گرفت. مواد و روشها: پیش از اعمال تیمارهای چالکود، نمونههای خاک از دو عمق 30-0 و 60-30 سانتیمتری به صورت مرکب از باغ مورد مطالعه تهیه شدند و ویژگیهای شیمیایی (pH، EC، ماده آلی و فسفر و پتاسیم فراهم) و زیستی (تنفس پایه، کربن زیستتوده میکروبی، تنفس ناشی از سوبسترا و ضریب متابولیک) در آنها اندازهگیری شدند. این پژوهش به صورت آزمایش فاکتوریل در قالب بلوکهای کامل تصادفی اجرا شد. اواسط اسفند 1398، تیمارهای آزمایشی به صورت چالکود در یک سوم بیرونی سایهانداز درختان به این صورت اعمال شدند: کود دامی کاملاً پوسیده (A)، کود دامی + اوره + دی آمونیوم فسفات + کلات آهن سکوسترین (B)، کود دامی + اوره + دی آمونیوم فسفات + کلات آهن سکوسترین + باکتری باسیلوس (C)، کود دامی + اوره + دی آمونیوم فسفات + کلات آهن سکوسترین + باکتری تیوباسیلوس + گوگرد پودری (D)، کود دامی + اوره + دی آمونیوم فسفات + کلات آهن سکوسترین + باکتری باسیلوس + باکتری تیوباسیلوس + گوگرد پودری (E). پس از برداشت میوهها در تابستان 1400، نمونههای خاک از دو عمق 30-0 و 60-30 سانتیمتر و از دیواره داخلی محل چالکود با استفاده از اوگر تهیه شدند. ویژگیهای شیمیایی و زیستی در خاکهای تیمار شده اندازهگیری و با ویژگیهای خاک قبل از چالکود (شاهد) مقایسه شدند. یافتهها: دامنه pH در تیمار E و خاک شاهد به ترتیب از 24/7 تا 56/7 در عمق 30-0 سانتیمتر و از 21/7 تا 79/7 در عمق 60-30 سانتیمتری متغیر بود. نتایج تجزیه واریانس نشان داد که اثر متقابل تیمار و عمق بر pH خاک معنیدار بود (01/0≥p). بیشترین و کمترین مقدار EC به ترتیب در تیمار E و خاک شاهد مشاهده شد. نتایج تجزیه واریانس نشان داد که علاوه بر اثر تیمار، تأثیر عمق و اثر متقابل عمق و تیمار بر مقدار ماده آلی خاک معنیدار بود (01/0≥p). کودهای آلی و شیمیایی باعث افزایش فسفر فراهم در خاک-های تیمار شده نسبت به شاهد شدند. همچنین، توانایی باکتریهای باسیلوس و تیوباسیلوس در حل کردن فسفات و کاهش pH خاک از طریق اکسیداسیون گوگرد، از دیگر عوامل مؤثر بر افزایش فسفر خاک در تیمار E بود. نتایج تجزیه واریانس نشان داد که بین مقدار پتاسیم فراهم در خاکهای تیمار شده و شاهد تفاوت معنیداری وجود داشت (01/0≥p). با افزایش عمق خاک، میزان تنفس پایه در خاکهای تیمار شده، افزایش و در خاک شاهد، کاهش یافت. کربن زیستتوده میکروبی در اعماق 30-0 و 60-30 سانتیمتر به ترتیب در محدوده 668-550 و 724-493 میلیگرم کربن در کیلوگرم خاک قرار داشت و بیشترین و کمترین مقدار در هر دو عمق به ترتیب در تیمار E و خاک شاهد به دست آمد. نتیجهگیری: اثر تیمارهای چالکود بر افزایش مقدار ماده آلی خاک معنیدار بود. مقدار فسفر فراهم خاک پس از چالکود به طور معنیداری نسبت به شاهد افزایش پیدا کرد، در حالیکه بین مقادیر این پارامتر در خاکهای چالکود شده، تفاوت معنیداری وجود نداشت. مقدار پتاسیم فراهم در خاکهای چالکود شده به طور معنیداری نسبت به شاهد افزایش پیدا کرد و این تفاوت در عمق 60-30 سانتیمتری چشمگیرتر بود. تیمارهای چالکود به طور معنیداری تنفس پایه، تنفس ناشی از سوبسترا و کربن زیستتوده میکروبی را نسبت به شاهد افزایش دادند، در حالیکه اثر آنها بر ضریب متابولیک معنیدار نبود. | ||
کلیدواژهها | ||
تنفس میکروبی؛ تیوباسیلوس؛ فسفر فراهم؛ ماده آلی | ||
مراجع | ||
1.De Corato, U. (2020). Soil microbiota manipulation and its role in suppressing soil-borne plant pathogens in organic farming systems under the light of microbiome-assisted strategies. Chemical and Biological Technologies in Agriculture, 7, 17. doi.org/10.1186/ s40538-020-00183-7.
2.Alvarenga, P., Palma, P., Mourinha, C., Farto, M., Dôres, J., Patanita, M., Cunha-Queda, C., Natal-da-Luz, T., Renaud, M., & Sousa, J. P. (2017). Recycling organic wastes to agricultural land as a way to improve its quality: a field study to evaluate benefits and risks. Waste Management, 61, 582-592. doi.org/ 10. 1016/j.wasman.2017.01.004.
3.Diacono, M. A., & Montemurro, F. (2015). Review effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture, 5, 221-230. doi.org/10.3390/agriculture5020221.
4.Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., & Jenkins, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80-99. doi.org/10.1016/j.agee.2012.10.001.
5.Keshavarz, P., Zangiabadi, M., & Abbaszadeh, M. (2013). Relationship between soil organic carbon and wheat grain yield as affected by soil clay content and salinity. Iranian Journal of Soil Research (formerly Soil and Water Sciences), 27 (3), 359-371. doi.org/10. 22092/ijsr.2013.126270. [In Persian]
6.Razavipour, T., Siavash-Moghaddam, S., Dolati, B., & Jangjoo, F. (2020). Organic and biological fertilizers and their importance in sustainable agriculture. Rice Research Institute of Iran. 202p. [In Persian]
7.Grobelak, A., Napora, A., & Kacprzak, M. (2015). Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering, 84, 22-28. doi.org/10.1016/j.ecoleng. 2015.07.019. 8.Rowell, D. L. (1994). Soil Science: Methods and Applications. Longman Scientific and Technical. 350p. doi.org/10.1002/jsfa.2740660423.
9.Anderson, J. P. E. (1982). Soil respiration. P 831-872. In: A.L. Page, R.H. Miller & D.R. Keeney (Eds.) Methods of soil analysis, Part 2, Chemical and microbiological properties. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin. doi.org/10.2134/agronmonogr9.2.2ed.c41.
10.Horwath, W. R., & Paul, E. A. (1994). Microbial biomass. P 753-773. In: D.R. Buxton (Ed.) Methods of soil analysis. Part 2: Microbiological and biochemical properties. SSSA Book Series, No.5. Madison, Wisconsin. doi.org/10.2136/ sssabookser5.2.c36.
11.Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. Academic Press, London. doi.org/10.1016/B978-0-12-513840-6.X5014-9.
12.Suman, A., Lal, M., Singh, A. K., & Gaur, A. (2006). Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agronomy Journal, 98, 698-704. doi.org/10.2134/agronj2005.0173.
13.Hazelton, P., & Murphy, B. (2016). Interpreting soil test results: What do all the numbers mean? CSIRO Publishing. 200p. doi.org/10.1071/9780643094680.
14.Boutasknit, A., Anli, M., Tahiri, A., Raklami, A., Ait-El-Mokhtar, M., Ben-Laouane, R., Ait Rahou, Y., Boutaj, H., Oufdou, K., Wahbi, S., El Modafar, C., & Meddich, A. (2020). Potential effect of horse manure-green waste and olive pomace-green waste compost on physiology and yield of garlic (Alluim sativum L.) and soil fertility. Gesunde Pflanzen, 72, 285-295. doi.org/10.1007/ s10343-020-00511-9. 15.Shahdi Kumleh, A. (2020). Effect of plant growth promoting rhizobacteria (PGPRs) on soil chemical properties in a clover-rice cropping system. Journal of Water and Soil Resources Conservation, 9 (4), 89-106. sanad.iau.ir/ Journal/ wsrcj/Article/829188. [In Persian]
16.Zhao, C., Chen, N., Liu, T., & Feng, C. (2023). Effects of adding different carbon sources on the microbial behavior of sulfate-reducing bacteria in sulfate-containing wastewater. Journal of Cleaner Production, 392, 136332. doi.org/10.1016/j.jclepro.2023.136332.
17.Besharati, H., Khosravi, H., Khavazi, K., Ziaeian A., Mirzashadi, K., Ghaderi, J., Zabihi, H. R., Mostashari, M., Sabah, A., & Rashidi, N. (2017). Effects of biological oxidation of sulfur on soil properties and nutrient availability in some soils of Iran. Iranian Journal of Soil Research, 31 (3), 393-403. doi.org/ 10.22092/ijsr.2017.113739. [In Persian]
18.Ahmadi, M., Shahsavani, S., Abasdokht, H., Asghari, H. R., & Gharanjik, S. (2018). Effect of vermicompost, sulfur and Thiobacillus on some soil physic-chemical properties, yield and yield components of maize (Zea mays L.) in Jovain district. Journal of Agroecology, 9 (4), 1031-1049. doi.org/10.22067/ jag.v9i4.50902. [In Persian]
19.Wynn, J. G., Bird, M. I., & Wong, V. N. L. (2004). Rayleigh distillation and the depth profile of 13C/12C ratios of soil organic carbon from soils of disparate texture in Iron Range National Park, Far North Queensland, Australia. Geochimica et Cosmo-chimica Acta, 69 (13), 1961-1973. doi.org/10.1016/j. gca.2004.09.003. 20.Zandi, S., Fatemi, A., Saiedi, M., & Hamedi, F. (2021). Investigation of different fertilizer management effect on nutritional status of apple by compositional nutrient diagnosis. Journal of Soil Management and Sustainable Production, 11 (2), 91-107. doi.org/10.22069/ejsms.2021.18030.1951. [In Persian]
21.Zhao, J., Ni, T., Li, J., Lu, Q., Fang, Z., Huang, Q., Zhang, R., Li, R., Shen, B., & Shen, Q. (2016). Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Applied Soil Ecology, 99, 1-12. doi.org/10. 1016/j.apsoil.2015.11.006.
22.Casado-Vela, J., Sellés, S., Navarro, J., Bustamante, M., Mataix, J., Guerrero, C., & Gomez, I. (2006). Evaluation of composted sewage sludge as nutritional source for horticultural soils. Waste Management, 26 (5), 946-952. doi.org/ 10.1016/j.wasman.2005.07.016.
23.Saha, S., Appireddy, G. K., Kundu, S., & Gupta, H. S. (2007). Comparative efficiency of three organic manures at varying rates of its application to baby corn. Archives of Agronomy and Soil Science, 53 (14), 507-517. doi.org/10. 1080/03650340701565183.
24.Najafi-Ghiri, M., & Boostani, H. R. (2017). Effect of application of licorice root residues and their biochars on potassium status of a calcareous soil. Journal of Water and Soil Conservation, 24 (3), 77-93. doi.org/10.22069/ jwfst. 2017.12722.2741. [In Persian]
25.Boutasknit, A., Anli, M., Tahiri, A., Raklami, A., Ait-El-Mokhtar, M., Ben-Laouane, R., Ait Rahou, Y., Boutaj, H., Oufdou, K., Wahbi, S., El Modafar, C., & Meddich, A. (2020). Potential effect of horse manure-green waste and olive pomace-green waste compost on physiology and yield of garlic (Alluim sativum L.) and soil fertility. Gesunde Pflanzen, 72, 285-295. doi.org/10.1007/ s10343-020-00511-9. 26.Ghollarata, M., & Raiesi, F. (2007). The adverse effects of soil salinization on the growth of Trifolium alexandrium L. and associated microbial and biochemical properties in a soil from Iran. Soil Biology and Biochemistry, 39 (7), 1699-1702. doi.org/10.1016/ j.soilbio.2007.01.024.
27.Marinari, S., Masciandaro, G., Ceccanti, B., & Grego, S. (2000). Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresource Technology, 72 (1), 9-17. doi.org/10.1016/S0960-8524(99)00094-2.
28.Motileji, S., Landi, A., & Zalaghi, R. (2019). Effects of application of filter cake, biochar and PGPR bacteria as organic- and bio-fertilizers on some soil quality indices and wheat growth. Journal of Soil Management and Sustainable Production, 91 (1), 151-163. doi.org/10.22069/ejsms.2019.15145.1822. [In Persian]
29.Tang, J., Zhang, J., Ren, L., Zhou, Y., Gao, J., Luo, L., Yang, Y., Peng, Q., Huang, H., & Chen, A. (2019). Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. Journal of Environmental Management, 242, 121-130. doi.org/10.1016/j. jenvman.2019.04.061.
30.McGonigle, T. P., & Turner, W. G. (2017). Grasslands and croplands have different microbial biomass carbon levels per unit soil organic carbon. Agriculture, 7 (7), 57. doi.org/ 10.3390/ agriculture7070057.
31.Mazraeh, M., Zalaghi, R., & Enayatizamir, N. (2019). The Effect of Pseudomonas sp. and Enterobacter cloacae on the distribution of carbon forms in the soil under wheat and corn cultivated in Rhizobax. Agricultural Engineering, 42 (1), 81-93. doi.org/10. 22055/agen.2019.24960.1411. [In Persian]
32.Luo, Y. Q., & Zhou, X. (2006). Soil Respiration and the Environment. Academic Press, Elsevier. 328p. doi.org/ 10.1016/B978-0-12-088782-8.X5000-1.
33.Chen, C. R., Condron, L. M., Davis, M. R., & Sherlick, R. R. (2003). Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. Forest Ecology and Management, 177, 35-43. doi.org/10. 1016/S0378-1127(02)00450-4.
34.Dehghan-Menshadi, H., Bahmanyar, M. A., Salek Gilani, S., & Lakzian, A. (2012). Effect of application of compost and vermicompost enriched with chemical fertilizer and manure on some biological indicators of soil quality of basil (Ocimum basilicum) rhizosphere. Journal of Water and Soil Science (Science and Technology of Agriculture and Natural Resources), 16 (60), 187-197. dorl.net/dor/20.1001.1.24763594.1391.16.60.16.1. [In Persian]
35.Baldi, E., Gioacchini, P., Montecchio, D., Mocali, S., Antonielli, L., Masoero, G., & Toselli, M. (2021). Effect of biofertilizers application on soil biodiversity and litter degradation in a commercial apricot orchard. Agronomy, 11 (6), 336-347. doi.org/10.3390/ agronomy11061116.
36.Rasouli-Sadaghiani, M. H., Vahedi, R., & Barin, M. (2021). Rhizospheric study of pruning wastes compost effect in the presence of growth promoting bacteria on some soil quality indices. Water and Soil Science, 31 (2), 133-149. doi.org/ 10.22034/ws.2020.12485. [In Persian]
37.Landi, L., Renella, G., Moreno, J. L., Falchini, L., & Nannipieri, P. (2000). Influence of cadmium on the metabolic quotient, L-:D-glutamic acid respiration ratio and enzyme activity: microbial biomass ratio under laboratory conditions. Biology and Fertility of Soils, 32, 8-16. doi.org/10.1007/s003740000205. | ||
آمار تعداد مشاهده مقاله: 61 تعداد دریافت فایل اصل مقاله: 73 |