
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,489 |
تعداد مشاهده مقاله | 8,608,288 |
تعداد دریافت فایل اصل مقاله | 8,199,942 |
نفوذپذیری آب به داخل خاک در بخشهای مختلف یک دامنه در فصول مختلف سال | ||
مجله پژوهشهای حفاظت آب و خاک | ||
دوره 31، شماره 3، مهر 1403، صفحه 31-58 اصل مقاله (699.33 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2024.22236.3716 | ||
نویسندگان | ||
کامران چپی* 1؛ مراد حمیدی2؛ عطااله شیرزادی3 | ||
1نویسنده مسئول، دانشیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران | ||
2کارشناس محیط زیست، اداره کل حفاظت محیط زیست کردستان، سنندج، ایران | ||
3استادیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران | ||
چکیده | ||
چکیده سابقه و هدف: نفوذپذیری یکی از مهمترین مؤلفههای چرخه آب است که نقش زیادی در تعیین رفتار هیدرولوژیکی خاک، میزان تولید رواناب، میزان رطوبت خاک برای رشد گیاهان طبیعی و محصولات کشاورزی دارد. تغییرات این مؤلفه تحت تأثیر فاکتورهای زیادی از قبیل خصوصیات بارش، خاک، نوع پوشش گیاهی، کاربری اراضی، شیب اراضی و فصل سال میباشد که لازم است در هر منطقه مشخص گردد. با توجه به اینکه رفتار نقاط مختلف یک دامنه در مقابل نفوذ آب متفاوت است، هدف از این پژوهش، بررسی تغییرات نفوذپذیری آب به داخل خاک در بخشهای مختلف یک دامنه شیبدار در فصول مختلف سال است. مواد و روشها: در این پژوهش، یک دامنه شیبدار به طول تقریبی 60 متر در داخل محوطه دانشگاه کردستان انتخاب شد. سه نقطه از این دامنه شامل نقطه بالادست با شیب صفر درصد، نقطه میانی با شیب 22 درصد و نقطه پاییندست با شیب 28 درصد برای استقرار استوانههای مضاعف در نظر گرفته شد. نوع بافت خاک دامنه رسی و رسی لومی و نوع پوشش گیاهی آن مراتع تنک بود. اندازهگیری نفوذپذیری در این سه نقطه در سه فصل پاییز، زمستان و بهار با فواصل زمانی یک ماهه با استوانه مضاعف، سه بار تکرار گردید. در حین آزمایش نفوذپذیری، رطوبت اولیه خاک و رطوبت اشباع خاک با روش گراویمتریک تعیین گردید. دادههای جمعآوری شده در قالب یک طرح بلوک کامل تصادفی تجزیه و تحلیل شدند. یافتهها: نتایج نشان داد که شیبهای مختلف تأثیری بر شدت نفوذپذیری اولیه، شدت نفوذپذیری متوسط و شدت نفوذپذیری نهایی نداشته است بدین معنی که ورود آب به داخل خاک در تمامی نقاط دامنه به صورت یکسان اتفاق میافتد. نتایج همچنین نشان داد که شدت نفوذپذیری اولیه و شدت نفوذپذیری متوسط در فصل پاییز به صورت معنیداری بیشتر از فصول زمستان و بهار است در حالی که شدت نفوذپذیری نهایی در تمام فصول یکسان میباشد. بررسیهای بیشتر نشان داد که هیچگونه الگوی رفتاری خاصی از وابستگی شدت نفوذپذیری اولیه، شدت نفوذپذیری متوسط و شدت نفوذپذیری نهایی در سه نقطه دامنه و در سه فصل سال به رطوبت اولیه و اشباع خاک وجود ندارد. بحث و نتیجهگیری: نتایج این پژوهش میتواند این موضوع را القاء نماید که نفوذپذیری در هر نقطه کاملاً وابسته به خصوصیات آن نقطه است و نمیتوان مدل رفتاری خاصی از این مؤلفه را به سایر نقاط تعمیم داد. بنابراین لازم است که نفوذپذیری در هر نقطه اندازهگیری شود و حتی در هنگام مدلسازی باید کاملاً متوجه ویژگیهای طبیعی آن نقطه بود. | ||
کلیدواژهها | ||
نفوذپذیری؛ دامنه شیبدار؛ فصل سال؛ رطوبت اولیه خاک؛ رطوبت اشباع خاک | ||
مراجع | ||
1.Horton, R. E. (1933). The role of infiltration in the hydrologic cycle. Eos, Transactions American Geophysical Union, 14 (1), 446-460. https://doi.org/ 10.1029/TR014i001p00446.
2.Wang, X. P., Cui, Y., Pan, Y. X., Li, X. R., Yu, Z., & Young, M. H. (2008). Effects of rainfall characteristics on infiltration and redistribution patterns in revegetation-stabilized desert ecosystems. Journal of Hydrology, 358 (1-2), 134-143. https://doi.org/10.1016/j.jhydrol.2008.06.002.
3.Corradini, C. (2014). Soil moisture in the development of hydrological processes and its determination at different spatial scales. Journal of Hydrology, 516, 1-5. https://doi.org/10.1016/j.jhydrol.2014.02.051.
4.Dunne, T., & Leopold, L. B. (1978). Water in environmental planning. Macmillan. San Francisco, 818 p.
5.Smith, H. L., & Leopold, L. B. (1942). Infiltration studies in the Pecos River watershed, New Mexico and Texas. Soil Science, 53 (3), 195-204.
6.Parr, J. F., & Bertrand, A. R. (1960). Water infiltration into soils. Advances in Agronomy, 12, 311-363. https://doi.org/ 10.1016/S0065-2113(08)60086-3.
7.Williams, R. E., & Allman, D. W. (1969). Factors affecting infiltration and recharge in a loess covered basin. Journal of Hydrology, 8 (3), 265-281. https://doi.org/ 10.1016/0022-1694(69)90002-X.
8.Tricker, A. S. (1981). Spatial and temporal patterns of infiltration. Journal of Hydrology, 49 (3-4), 261-277. https:// doi.org/10.1016/0022-1694(81)90217-1.
9.Poesen, J. (1984). The influence of slope angle on infiltration rate and Hortonian overland flow. Zeitschrift für Geomorpholgie, Supplement Band, 49. 117-131. https://lirias.kuleuven.be/ 1616022?limo=0.
10.Smith, R. E., Corradini, C., & Melone, F. (1993). Modeling infiltration for multistorm runoff events. Water Resources Research, 29 (1), 133-144. https://doi.org/10.13031/2013.42239.
11.Thompson, S. E., Harman, C. J., Heine, P., & Katul, G. G. (2010). Vegetation/ infiltration relationships across climatic and soil type gradients. Journal of Geophysical Research: Biogeosciences, 115, G2. https://doi.org/10.1029/2009 JG001134.
12.Lai, W., Ogden, F. L., Steinke, R. C., & Talbot, C. A. (2015). An efficient and guaranteed stable numerical method for continuous modeling of infiltration and redistribution with a shallow dynamic water table. Water Resources Research, 51 (3), 1514-1528. https://doi.org/10. 1002/2014WR016487.
13.Wu, S., Chui, T. F. M., & Chen, L. (2021). Modeling slope rainfall-infiltration-runoff process with shallow water table during complex rainfall patterns. Journal of Hydrology, 599, 126458. https://doi.org/10.1016/ j.jhydrol.2021.126458.
14.Vereecken, H., Amelung, W., Bauke, S. L., Bogena, H., Brüggemann, N., Montzka, C., Vanderborght, J., Bechtold, M., Blöschl, G., Carminati, A., Javaux, M., Konings, A. G., Kusche, J., Neuweiler, I., Or, D., Steele-Dunne, S., Verhoef, A., Young, M., & Zhang, Y. (2022). Soil hydrology in the Earth system. Nature Reviews Earth & Environment, 3 (9), 573-587. https:// doi.org/10.1038/s43017-022-00324-6.
15.Wu, S., Ma, D., Liu, Z., Zhang, J., Chen, L., Pan, X., & Chen, L. (2022). An approximate solution to one-dimensional upward infiltration in soils for a rapid estimation of soil hydraulic properties. Journal of Hydrology, 612, 128188. https://doi.org/10.1016/j.jhydrol.2022.128188.
16.Wu, S., Ma, D., Liu, Z., Chen, L., Chen, L., & Zhang, J. (2023). A novel approximate solution to slope rainfall infiltration. Journal of Hydrology, 625, 130039. https://doi.org/10.1016/j. jhydrol.2023.130039.
17.Wilcox, B. P., Wood, M. K., & Tromble, J. M. (1988). Factors influencing infiltrability of semiarid mountain slopes. Rangeland Ecology & Management/ Journal of Range Management Archives, 41 (3), 197-206.
18.Muntohar, A. S., & Liao, H. J. (2019). Factors affecting rain infiltration on a slope using Green-Ampt model. Journal of Physical Science, 30 (3), 71-86. https://doi.org/10.21315/jps2019.30.3.5.
19.Levy, G. J., Smith, H. J. C., & Agassi, M. (1988). Water temperature effect on hydraulic conductivity and infiltration rate of soils. South African Journal of Plant and Soil, 6 (4), 240-244. https://hdl.handle.net/10520/AJA02571862_290.
20.Jaynes, D. B. (1990). Temperature variations effect on field-measured infiltration. Soil Science Society of America Journal, 54 (2), 305-312. https://doi.org/10.2136/sssaj1990.03615995005400020002x.
21.Borselli, L., Torri, D., Poesen, J., & Sanchis, P.S. (2001). Effects of water quality on infiltration, runoff and interrill erosion processes during simulated rainfall. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 26 (3), 329-342. https:// doi.org/ 10.1002/ 1096-9837 (200103)26:3<329::AID-ESP177> 3.0. CO;2-Y.
22.Loizeau, S., Rossier, Y., Gaudet, J. P., Refloch, A., Besnard, K., Angulo-Jaramillo, R., & Lassabatere, L. (2017). Water infiltration in an aquifer recharge basin affected by temperature and air entrapment. Journal of Hydrology and Hydromechanics, 65 (3), 222-233. https://doi.org/10.1515/johh-2017-0010.
23.Liu, Z., Ma, D., Hu, W., & Li, X. (2018). Land use dependent variation of soil water infiltration characteristics and their scale-specific controls. Soil and Tillage Research, 178, 139-149. https:// doi.org/10.1016/j.still.2018.01.001.
24.Singh, B., Sihag, P., & Deswal, S. (2019). Modelling of the impact of water quality on the infiltration rate of the soil. Applied Water Science, 9, 1-9. https:// doi.org/10.1007/s13201-019-0892-1.
25.Zhang, Y., Zhao, W., Li, X., Jia, A., & Kang, W. (2021). Contribution of soil macropores to water infiltration across different land use types in a desert–oasis ecoregion. Land Degradation & Development, 32 (4), 1751–1760. https://doi.org/10.1002/ldr.3823.
26.Morbidelli, R., Corradini, C., Saltalippi, C., Flammini, A., Dari, J., & Govindaraju, R. S. (2019). A new conceptual model for slope-infiltration. Water, 11 (4), 678. https://doi.org/10. 3390/w11040678.
27.Beven, K. J. (2011). Rainfall-runoff modelling: the primer. John Wiley & Sons.
28.Morbidelli, R., Saltalippi, C., Flammini, A., & Govindaraju, R. S. (2018). Role of slope on infiltration: A review. Journal of hydrology, 557, 878-886. https:// doi.org/10.1016/j.jhydrol.2018.01.019.
29.Nassif, S. H., & Wilson, E. M. (1975). The influence of slope and rain intensity on runoff and infiltration. Hydrological Sciences Journal, 20 (4), 539-553. https://doi.org/10.1080/02626667509491586.
30.Sharma, K. D., Singh, H. P., & Pareek, O. P. (1983). Rainwater infiltration into a bare loamy sand. Hydrological Sciences Journal, 28 (3), 417-424. https://doi.org/10.1080/02626668309491980. 31.Philip, J. R. (1991). Hillslope infiltration: Planar slopes. Water Resources Research, 27 (1), 109-117. https://doi.org/10.1029/90WR01704.
32.Cerdà, A., & García-Fayos, P. (1997). The influence of slope angle on sediment, water and seed losses on badland landscapes. Geomorphology, 18 (2), 77-90. https://doi.org/10.1016/ S0169-555X(96)00019-0.
33.Fox, D. M., Bryan, R. B., & Price, A. G. (1997). The influence of slope angle on final infiltration rate for interrill conditions. Geoderma, 80 (1-2), 181-194. https:// doi.org/ 10.1016/ S0016-7061 (97)00075-X.
34.Chaplot, V., & Le Bissonnais, Y. (2000). Field measurements of interrill erosion under different slopes and plot sizes. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 25 (2), 145-153. https://doi.org/ 10. 1002/(SICI)1096-9837(200002) 25:2< 145::AID-ESP51>3.0.CO;2-3. 35.Janeau, J. L., Bricquet, J. P., Planchon, O., & Valentin, C. (2003). Soil crusting and infiltration on steep slopes in northern Thailand. European Journal of Soil Science, 54 (3), 543-554. https:// doi.org/ 10.1046/ j.1365-2389. 2003. 00494.x.
36.Assouline, S., & Ben-Hur, M. (2006). Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena, 66 (3), 211-220. https:// doi.org/10.1016/j.catena.2006.02.005.
37.Chen, L., & Young, M. H. (2006). Green‐Ampt infiltration model for sloping surfaces. Water resources research, 42, 7. https://doi.org/10. 1029/2005WR004468.
38.Essig, E. T., Corradini, C., Morbidelli, R., & Govindaraju, R. S. (2009). Infiltration and deep flow over sloping surfaces: Comparison of numerical and experimental results. Journal of hydrology, 374 (1-2), 30-42. https:// doi.org/10.1016/j.jhydrol.2009.05.017.
39.Ribolzi, O., Patin, J., Bresson, L. M., Latsachack, K. O., Mouche, E., Sengtaheuanghoung, O., Silvera, N., Thiebaux, J. P., & Valentin, C. (2011). Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology, 127 (1-2), 53-63. https://doi.org/10. 1016/j.geomorph.2010.12.004.
40.Patin, J., Mouche, E., Ribolzi, O., Chaplot, V., Sengtahevanghoung, O., Latsachak, K. O., Soulileuth, B., & Valentin, C. (2012). Analysis of runoff production at the plot scale during a long-term survey of a small agricultural catchment in Lao PDR. Journal of Hydrology, 426, 79-92. https://doi.org/ 10.1016/j.jhydrol.2012.01.015.
41.Lv, M., Hao, Z., Liu, Z., & Yu, Z. (2013). Conditions for lateral downslope unsaturated flow and effects of slope angle on soil moisture movement. Journal of Hydrology, 486, 321-333. https://doi.org/10.1016/j.jhydrol.2013.02.013.
42.Morbidelli, R., Saltalippi, C., Flammini, A., Cifrodelli, M., Corradini, C., & Govindaraju, R. S. (2015). Infiltration on sloping surfaces: Laboratory experimental evidence and implications for infiltration modeling. Journal of Hydrology, 523, 79-85. https://doi.org/ 10.1016/j.jhydrol.2015.01.041.
43.Mu, W., Yu, F., Li, C., Xie, Y., Tian, J., Liu, J., & Zhao, N. (2015). Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water, 7 (6), 2990-3008. https:// doi.org/10.3390/w7062990.
44.Khan, M. N., Gong, Y., Hu, T., Lal, R., Zheng, J., Justine, M. F., Azhar, M., Che, M., & Zhang, H. (2016). Effect of slope, rainfall intensity and mulch on erosion and infiltration under simulated rain on purple soil of south-western Sichuan province, China. Water, 8 (11), 528. https://doi.org/10. 3390/ w8110528.
45.Morbidelli, R., Saltalippi, C., Flammini, A., Cifrodelli, M., Picciafuoco, T., Corradini, C., & Govindaraju, R. S. (2016). Laboratory investigation on the role of slope on infiltration over grassy soils. Journal of Hydrology, 543, 542-547. https://doi.org/10.1016/ j.jhydrol.2016.10.024.
46.Wang, J., Chen, L., & Yu, Z. (2018). Modeling rainfall infiltration on hillslopes using Flux-concentration relation and time compression approximation. Journal of hydrology, 557, 243-253. https://doi.org/10.1016/ j.jhydrol.2017.12.031.
47.Duhita, A. D. P., Rahardjo, A. P., & Hairani, A. (2021). The effect of slope on the infiltration capacity and erosion of Mount Merapi Slope Materials. International Journal of the Civil Engineering Forum, 7 (1), 71-84. https://doi.org/10.22146/jcef.58350/.
48.Jain, L., & Chakma, S. (2023). Parameterisation of infiltration models using neural network under simulated hillslope experiments for different land-uses and slopes. Journal of Earth System Science, 132 (1), 20. https://doi.org/10. 18520/cs/v124/i1/94-101.
49.Jia, Z., Weng, B., Yan, D., Peng, H., & Dong, Z. (2024). The effects of different factors on soil water infiltration properties in High Mountain Asia: A meta-analysis. Catena, 234, 107583. https:// doi.org/10.1016/j.catena.2023. 107583.
50.Poesen, J. (1983). Regenerosiemechanismen en bodemerosiegevoeligheid. Ph.D dissertation, Faculty of Sciences, KU Leuven. https://library.wur.nl/Web Query/titel/192366. 51.Thornes, J. B. (1994). Catchment and channel hydrology. In Geomorphology of desert environments (pp. 303-332). Dordrecht: Springer Netherlands.
52.Green, R. E. (1962). Infiltration of water into soils as influenced by antecedent moisture. Unpublished Ph.D. thesis, Iowa State University. https://www. proquest.com/openview/2fc5c4bb26178c1f24f8e2367734d761/1?pq-origsite= gscholar&cbl=18750&diss=y.
53.Schumm, S. A., & Lusby, G. C. (1963). Seasonal variation of infiltration capacity and runoff on hillslopes in western Colorado. Journal of Geophysical Research, 68 (12), 3655-3666. https:// doi.org/10.1029/JZ068i012p03655.
54.Vaezi, A. R., & Behtari, M. (2018). The effect of initial moisture on runoff generation and soil loss in different soil textures under simulated rainfall condition. Iranian Journal of Watershed Management Science and Engineering, 11 (39), 11-21. 20.1001.1.20089554. 1396.11.39.1.9. [In Persian]
55.Cerdà, A. (1996). Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma, 69 (3-4), 217-232. https:// doi.org/10.1016/0016-7061(95)00062-3.
56.Cerdà, A. (1999). Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research, 35 (1), 319-328. https://doi.org/10. 1029/98WR01659.
57.Diamond, J. (2004). Buck Density Determination of Chlonroche Country Soils. Irish Geography, 36 (2), 243-248.
58.Ukata, S. U., Akintoye, O. A., Nkpena, C. O., & Harrison, U. E. (2014). Seasonal Variations of Infiltration Rates of Forest Land Cover in Utisols Soils of Abini, Biase, Cross River State of Nigeria. Asian Review of Environmental and Earth Sciences, 1 (1), 16-18.
59.Del Toro-Guerrero, F. J., Vivoni, E. R., Kretzschmar, T., Bullock Runquist, S. H., & Vázquez-González, R. (2018). Variations in soil water content, infiltration and potential recharge at three sites in a Mediterranean mountainous region of Baja California, Mexico. Water, 10 (12), 1844. https:// doi.org/10.3390/w10121844.
60.Mazarei, R., Mohammadi, A. S., Ebrahimian, H., & Naseri, A. A. (2021). Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates. Agricultural Water Management, 245, 106465. https:// doi.org/10.1016/j.agwat.2020.106465.
61.Chapi, K. (2009). Monitoring and modeling of runoff generating areas in a small agricultural watershed. Ph.D. Dissertation, School of Engineering, University of Guelph, 250 p.
62.Hewlett, J. D. (1961). Soil moisture as a source of base flow from steep mountain watersheds. USD A Forest Service. Southeastern Forest Experiment Station, Ashville, North Carolina, Report No. 132, 11.
63.Dunne, T. (1970). Runoff production in a humid area. USDA-ARS, Report ARS41-160, Washington, D.C., 108 p.
64.Dunne, T., & Black, R. D. (1970). Partial area contributions to storm runoff in a small New England watershed. Water resources research, 6 (5), 1296-1311. https://doi.org/10. 1029/WR006i005p01296.
65.Freeze, R. A. (1980). A stochastic‐conceptual analysis of rainfall‐runoff processes on a hillslope. Water Resources Research, 16 (2), 391-408. https://doi.org/10.1029/WR016i002p00391.
66.Hibbert, A. R., & Troendle, C. A. (1988). Streamflow generation by variable source area. In: Forest hydrology and ecology at Coweeta (pp. 111-127). New York, NY: Springer New York.
67.Chapi, K., Rudra, R. P., Ahmed, S. I., Khan, A. A., Gharabaghi, B., Dickinson, W. T., & Goel, P. K. (2015). Spatial-Temporal Dynamics of Runoff Generation Areas in a Small Agricultural Watershed in Southern Ontario. Journal of Water Resource and Protection, 7, 14–40. http://dx.doi.org/ 10.4236/jwarp.2015.71002.
68.Emberger, L. (1932). Sur une formule climatique et ses applications en botanique. La Météorologie, 92, 423-432.
69.De Martonne, E. (1926). Aerisme, et índices d’aridite. Comptesrendus de L’Academie des Sciences, 182, 1395-1398.
70.Hanafi, A., & Hatami, I. (2013). Producing climate map for Kurdistan Province using information technology system. Scientific-Research Quarterly of Geographical Data (SEPEHR), 22 (87), 24-28. 20.1001.1.25883860. 1392.22.87.3.4. [In Persian]
71.Ahmadi, M., & Kamangar, M. (2023). Statistical analysis and forecasting monthly temperature of Sanandaj synoptic station with the application of SARIMA model. Water and Soil Management and Modelling, 3 (1), 1-13. 10.22098/ mmws. 2022. 11080. 1099.[In Persian]
72.American Society for Testing and Materials (ASTM). (2009). D3385–09. Standard Test Method for Infiltration Rate of Soils in Field Using Double Ring Infiltrometer. West Conshohocken, PA, USA: ASTM.
73.Johnson, A. I. (1962). Methods of measuring soil moisture in the field. US Department of the Interior, US Geological Survey.
74.Reynolds, S. G. (1970). The gravimetric method of soil moisture determination Part IA study of equipment, and methodological problems. Journal of Hydrology, 11 (3), 258-273. https:// doi.org/10.1016/0022-1694(70)90066-1.
75.Buoyoucos, G. J. (1926). Hydrometer method for marking particle size analysis of soil. Agronomy Journal, 54, 4661-4665.
76.Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52 (3/4), 591-611. https://doi.org/10. 2307/2333709.
77.Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge didistribuzione. Giorn Dell'inst Ital Degli Att, 4, 89–91.
78.Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. The annals of mathematical statistics, 19 (2), 279-281. https://www.jstor.org/stable/2236278.
79.Cramér, H. (1928a). On the composition of elementary errors: First paper: Mathematical deductions. Scandinavian Actuarial Journal, 1, 13-74. https://doi. org/10.1080/03461238.1928.10416862.
80.Cramér, H. (1928b). On the composition of elementary errors: second paper: statistical applications. Scandinavian Actuarial Journal, 1, 141-180. https://doi. org/10.1080/03461238.1928.10416872.
81.von Mises, R. (1947). On the asymptotic distribution of differentiable statistical functions. The annals of mathematical statistics, 18 (3), 309-348. https://www. jstor.org/stable/2235734.
82.Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes. The annals of mathematical statistics, 193-212. https://www.jstor.org/stable/2236446.
83.Fisher, R. A. (1935). The design of experiments (1st Ed.). Edinburgh: Oliver and Boyd.
84.Latuni, F. (2019). Development of Road and Bridge Infrastructure to Enhance Economic Growth in the Coastal Communities of Tuminting District in Manado City. International Journal of Multicultural and Multireligious Understanding, 6 (5), 780-791. http:// dx.doi.org/10.18415/ijmmu.v6i5.1143.
85.Mangrio, A. G., Asif, M., Ahmed, E., Sabir, M. W., Khan, T., & Jahangir, I. (2013). Hydraulic performance evaluation of pressure compensating (pc) emitters and micro-tubing for drip irrigation system. Science Technology and Development, Islamabad, 32 (4), 290-298. | ||
آمار تعداد مشاهده مقاله: 85 تعداد دریافت فایل اصل مقاله: 90 |