
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,632,397 |
تعداد دریافت فایل اصل مقاله | 8,227,493 |
برآورد میزان کلروفیل آ در مخزن سد با استفاده از تکنیکهای سنجش از دور و مدل های دادهکاوی | ||
مجله پژوهشهای حفاظت آب و خاک | ||
دوره 31، شماره 3، مهر 1403، صفحه 85-108 اصل مقاله (1.69 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2024.22570.3739 | ||
نویسندگان | ||
جواد ظهیری* 1؛ میترا چراغی2؛ میثم سالاری جزی3 | ||
1نویسنده مسئول، دانشیار گروه علوم و مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران. | ||
2نویسنده مسئول، استادیار گروه مهندسی طبیعت، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران. | ||
3دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
چکیده | ||
کلروفیل آ بهعنوان معیاری جهت اندازهگیری میزان جلبک در حال رشد در آب مورد استفاده قرار میگیرد که میتوان از آن برای طبقهبندی وضعیت تغذیهای پهنههای آبی استفاده کرد. ا بر اساس بررسیهای صورت گرفته غلظت سطوح بسیار بالای کلروفیل آ نشاندهنده کیفیت پایین آب است و وجود طولانیمدت غلظتهای بالای کلروفیل آ مشکلات اساسی برای تولید اولیه زیستتوده است. بر همین اساس غلظت کلروفیل آ یک شاخص کلیدی برای کیفیت آب بهحساب میآید. در این تحقیق سعی شده است تا با استفاده از تکنیکهای سنجشازدور و مدلهای دادهکاوی اقدام به برآورد میزان کلروفیل آ در مخزن سد سردشت گردد. اطلاعات مورد استفاده در این تحقیق به دو قسمت تقسیم میشوند. قسمت اول مقادیر اندازهگیری شده کلروفیل آ در مخزن سد سردشت میباشد. این اطلاعات شامل 7 مرحله اندازهگیری در 10 نقطه با مختصات مختلف در مخزن سد بوده و مربوط به اسفندماه 1396 تا خردادماه 1398 میباشد. قسمت دوم اطلاعات مورد استفاده، تصاویر ماهواره سنتینل-2 بوده که از اطلاعات آن در مدل-های دادهکاوی استفاده شده است. اطلاعات باندهای مختلف از تصاویر سنتینل-2 استخراج گردید و بر اساس مقادیر باندی، معیارهای سنجش میزان کلروفیل آ محاسبه شده و در اختیار مدلهای دادهکاوی جهت آموزش قرار گرفت. در این تحقیق از سه مدل دادهکاوی XGBoost، M5 و MARS جهت برآورد میزان کلروفیل آ استفاده شد. در این مطالعه، 9 معادله برآورد کلروفیل آ به عنوان ورودی مدلهای دادهکاوی در نظر گرفته شد و مقدار لگاریتم کلروفیل آ اندازهگیری شده به عنوان خروجی لحاظ گردید. 80 درصد دادههای موجود جهت آموزش مدلهای دادهکاوی و 20 درصد باقیمانده جهت صحتسنجی کارایی مدلهای مورد استفاده بهکار رفت. بر اساس اطلاعات ورودی، مدل درختی M5 فضای مسئله را به 5 قسمت تقسیم کرده و به ازای هر بخش معادله خطی ارائه داده است. بر اساس ساختار ارائه شده توسط الگوریتمهای M5 و MARS، ترکیبهای باندی آبی، قرمز و سبز و نیز مادونقرمز و قرمز تاثیر بالایی بر روی مدلهای ارائه شده توسط این دو الگوریتم داشتهاند. نتایج بهدستآمده از الگوریتم XGBoost نشاندهنده اهمیت ترکیبهای باندی آبی، قرمز و سبز بر روی نتایج ارائه شده میباشد. بر این اساس ترکیب باندی آبی، قرمز و سبز در هر سه الگوریتم بهعنوان مهمترین و یا یکی از مهمترین متغیرهای ورودی جهت محاسبه کلروفیل آ مورد استفاده قرار گرفته است. ضریب تبیین برای سه مدل XGBoost، M5 و MARS به ترتیب برابر با 61/0، 49/0 و 31/0 محاسبه شد. مقدار ضریب ناش-ساتکلیف برای سه مدل XGBoost، M5 و MARS به ترتیب برابر با 54/0، 47/0 و 27/0 محاسبه شد که نشان میدهد نتایج دو مدل XGBoost و M5 دارای وضعیت مطلوبی میباشند. نتایج مدلهای مورد استفاده نشان میدهد که دو مدل XGBoost و M5 نتایج دقیقتری را نسبت به مدل MARS ارائه نمودند. استفاده از دیاگرام تیلور نیز نشاندهنده نزدیک بودن کارایی دو مدل XGBoost و M5 در محاسبه میزان کلروفیل آ میباشد. توزیع کلروفیل آ در محدوده مخزن سد سردشت توسط مدلهای مورد استفاده نشان میدهد که در نواحی محدودی از سد، مقادیر ارائهشده با مقادیر اندازه-گیری شده همخوانی ندارد که محدود بودن دادههای اندازهگیری مورد استفاده و عدم انطباق کامل زمانی تصاویر سنتینل-2 با دادههای اندازهگیری در مخزن سد میتواند تأثیر مهمی در این زمینه داشته باشد. استفاده از تعداد دادههای متعدد در مخازن سدهای مختلف، بهکارگیری مدلهای دادهکاوی متنوع و استفاده از تصاویر سایر سنجندهها میتواند ابزار مناسبی را در اختیار مدیران مخازن قرار داده تا بتوانند با دقت بیشتری اقدام به ارزیابی کیفی آب مخازن نمایند. | ||
کلیدواژهها | ||
جلبک؛ کیفیت آب؛ تصاویر سنتینل-2؛ الگوریتمهای XGBoost؛ M5 و MARS | ||
مراجع | ||
1.USEPA. (2022). National Lakes Assessment 2022. Field Operations Manual. Version 1.2. EPA 841-B-16-011. U.S. Environmental Protection Agency, Washington, DC. 56-58.
2.Stumpf, R. P., Wynne, T. T., Baker, D. B., & Fahnenstiel, G. L. (2012). Interannual variability of cyanobacterial blooms in Lake Erie. PloS One, 7, 1-11.
3.Linkov, I., Satterstrom, F. K., Loney, D., & Steevans, J. A. (2009). The impact of harmful algal blooms on USACE operations. ANSRP technical notes collection. ERDC/TN ansrp-09-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center, 16 p.
4.Graham, J. L. (2006). Harmful algal blooms. USGS Fact Sheet, 2006-3147, 2 p.5.Beck, R., Zhan, S., Liu, H., Tong, S., Yang, B., Xu, M., ... Su, H. (2016). Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sensing of Environment, 178, 15-30.
6.Werdell, P. J., & Bailey, S. W. (2005). An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation. Remote sensing of environment, 98 (1), 122-140.
7.Attila, J., Koponen, S., Kallio, K., Lindfors, A., Kaitala, S., & Ylöstalo, P. (2013). MERIS Case II water processor comparison on coastal sites of the northern Baltic Sea. Remote Sensing of Environment, 128, 138-149.
8.Lei, S., Wu, D., Li, Y., Wang, Q., Huang, C., Liu, G., ... & Lv, H. (2019). Remote sensing monitoring of the suspended particle size in Hongze Lake based on GF-1 data. International journal of remote sensing, 40 (8), 3179-3203.
9.Shi, K., Zhang, Y., Li, Y., Li, L., Lv, H., & Liu, X. (2015). Remote estimation of cyanobacteria-dominance in inland waters. Water research, 68, 217-226.
10.Taheri, A., Serajian, M. R., Ghashghaie, M., & Weysi, K. (2018). Estimation of Chlorophyll-a Concentration Using Remote Sensing Images. Iranian Journal of Soil and Water Research, 49 (1), 39-50. [In Persian]
11.Mobarak Hassan, E. (2021). Impact of atmospheric factors with emphasis on dust concentration on chlorophyll in the southeast of the Caspian Sea (2007-2007). Journal of Oceanography, 12 (46), 74-85. [In Persian] 12.Matsushita, B., Yang, W., Yu, G., Oyama, Y., Yoshimura, K., & Fukushima, T. (2015). A hybrid algorithm for estimating the chlorophyll-a concentration across different trophic states in Asian inland waters. ISPRS journal of photogrammetry and remote sensing, 102, 28-37.
13.Ryu, J., Son, S., Jo, C.O., Kim, H., Kim, Y., Lee, S. H., & Joo, H. (2023). Revised chlorophyll-a algorithms for satellite ocean color sensors in the East/Japan Sea. Regional Studies in Marine Science, 60, 102876.
14.Li, H., Li, X., Song, D., Nie, J., & Liang, S. (2024). Prediction on daily spatial distribution of chlorophyll-a in coastal seas using a synthetic method of remote sensing, machine learning and numerical modeling. Science of the Total Environment, 910, 168642.
15.Najafzadeh Ghachkanloo, A. (2019). Estimation of turbidity and chlorophyll-a in lakes using remote sensing, Case study: Sardasht reservoir. Master's thesis, Kharazmi University, 109 p. [In Persian]
16.Hedayati Goudarzi, F. (2021). The effect of climate change on water quality in Sardasht dam using CE-Qual-W2 model. Master's thesis, Kharazmi University, 171 p. [In Persian]
17.Rangzan, K., Kabolizade, M., Rahshidian, M., & Delfan, H. (2019). Modeling and zoning water quality parameters using Sentinel-2 satellite images and computational intelligence (Case study: Karun River). Journal of RS and GIS for Natural Resources, 10 (4), 21-37. [In Persian]
18.Glasmann, F., Senf, C., Seidl, R., & Annighöfer, P. (2023). Mapping subcanopy light regimes in temperate mountain forests from Airborne Laser Scanning, Sentinel-1 and Sentinel-2. Science of Remote Sensing, 8, 100107.
19.O'Reilly, J. E., & Werdell, P. J. (2019). Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6. Remote sensing of environment, 229, 32-47.
20.Hu, C., Feng, L., Lee, Z., Franz, B. A., Bailey, S. W., Werdell, P. J., & Proctor, C. W. (2019). Improving satellite global chlorophyll a data products through algorithm refinement and data recovery. Journal of Geophysical Research: Oceans, 124 (3), 1524-1543.
21.Xing, Q., & Hu, C. (2016). Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique. Remote sensing of Environment, 178, 113-126.
22.Watanabe, F., Alcantara, E., Rodrigues, T., Rotta, L., Bernardo, N., & Imai, N. (2017). Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil). Anais da Academia Brasileira de Ciências, 90, 1987-2000.
23.Duan, H., Zhang, Y., Zhang, B., Song, K., & Wang, Z. (2007). Assessment of chlorophyll-a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environmental monitoring and assessment, 129, 295-308. 24.Tan, W., Liu, P., Liu, Y., Yang, S., & Feng, S. (2017). A 30-year assessment of phytoplankton blooms in Erhai Lake using Landsat imagery: 1987 to 2016. Remote Sensing, 9 (12), 1265.
25.Nguyen, H. Q., Ha, N. T., & Pham, T. L. (2020). Inland harmful cyanobacterial bloom prediction in the eutrophic Tri An Reservoir using satellite band ratio and machine learning approaches. Environmental Science and Pollution Research, 27, 9135-9151. 26.Bocharov, A. V., Tikhomirov, O. A., Khizhnyak, S. D., & Pakhomov, P. M. (2017). Monitoring of chlorophyll in water reservoirs using satellite data. Journal of Applied Spectroscopy, 84, 291-295.
27.Matthews, M. W., & Odermatt, D. (2015). Improved algorithm for routine monitoring of cyanobacteria and eutrophication in inland and near-coastal waters. Remote Sensing of Environment, 156, 374-382.
28.Eibe, F., Hall, M. A., & Witten, I. H. (2016). The WEKA workbench. Online appendix for data mining: practical machine learning tools and techniques. In Morgan Kaufmann. San Francisco, California: Morgan Kaufmann Publishers, 363-368.
29.Chen, T., & Guestrin, C. (2016). Xgboost: a scalable tree boosting system Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016: 785‐794. ACM, New York, NY.
30.Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., ... & Xiang, Y. (2018). Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy conversion and management, 164, 102-111.
31.Yao, X., Fu, X., & Zong, C. (2022). Short-term load forecasting method based on feature preference strategy and LightGBM-XGboost. IEEE Access, 10, 75257-75268. 32.Quinlan, J. R. (1992). Learning with continuous classes. Singapore, 343-348.: Proceedings Australian Joint Conference on Artificial Intelligence, World Scientific.
33.Wang, Y., & Witten, I. H. (1997). Inducing model trees for continuous classes. In Proceedings of the ninth European conference on machine learning, 9 (1), 128-137.
34.Zahiri, J. (2015). Nonparametric CART and M5’ Methods Application on Bridge Piers Scour Depth Computation. Irrigation and Water Engineering, 5 (4), 35-50.
35.Jung, N. C., Popescu, I., Kelderman, P., Solomatine, D. P., & Price, R. K. (2010) Application of model trees and other machine learning techniques for algal growth prediction in Yongdam reservoir, Republic of Korea. Journal of Hydroinformatics. 12 (3), 262-274.
36.Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, 19 (1), 1-67.
37.Boehmke, B., & Greenwell, B. M. (2019). Hands-on machine learning with R. Chapman and Hall/CRC, 1-392.
38.Zahiri, J., Mollaee, Z., & Ansari, M. R. (2020). Estimation of suspended sediment concentration by M5 model tree based on hydrological and moderate resolution imaging spectroradiometer (MODIS) data. Water Resources Management, 34 (12), 3725-3737.
39.Alizamir, M., Heddam, S., Kim, S., Gorgij, A. D., Li, P., Ahmed, K. O., & Singh, V. P. (2021). Prediction of daily chlorophyll-a concentration in rivers by water quality parameters using an efficient data-driven model: online sequential extreme learning machine. Acta Geophysica, 69, 2339-2361.
40.Cui, Z., Du, D., Zhang, X., & Yang, Q. (2022). Modeling and Prediction of Environmental Factors and Chlorophyll a Abundance by Machine Learning Based on Tara Oceans Data. Journal of Marine Science and Engineering, 10 (11), 1749. | ||
آمار تعداد مشاهده مقاله: 73 تعداد دریافت فایل اصل مقاله: 85 |