
تعداد نشریات | 13 |
تعداد شمارهها | 626 |
تعداد مقالات | 6,517 |
تعداد مشاهده مقاله | 8,746,952 |
تعداد دریافت فایل اصل مقاله | 8,317,536 |
مقایسه خواص رئولوژیکی نانوژلهای نانوسلولز چوب، نانوسلولز باکتری و نانوکیتین | ||
نشریه فرآوری و نگهداری مواد غذایی | ||
دوره 14، شماره 2، تیر 1401، صفحه 147-168 اصل مقاله (2.45 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejfpp.2021.19225.1669 | ||
نویسندگان | ||
حسام الدین جنت امانی1؛ علی معتمدزادگان* 2؛ محمد فارسی1؛ حسین یوسفی3 | ||
1گروه علوم و صنایع غذایی، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران | ||
2گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
3گروه مهندسی چوب و کاغذ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
چکیده | ||
سابقه و هدف: سلولز سالهاست که در قالب چوب و الیاف گیاهی بهعنوان یک منبع انرژی، مصالح ساختمانی و پوشاک بهکاربرده میشود. سلولز باکتریایی به دلیل خلوص زیاد و ویژگیهای بسیار مناسبتر از سلولز گیاهی، بهعنوان ماده زیستی مناسب برای مصارف گوناگون بهکاررفته است، مثل صنایع تولید کاغذ، الکترونیکی، غذایی، آکوستیکی، زیست پزشکی، مهندسی بافت و پزشکی. خواص نانوسلولز (مانند خواص مکانیکی، خواص لایهنازک، ویسکوزیته و غیره) آن را مادهای جالب برای بسیاری از برنامههای کاربردی میسازد. کیتین فراوانترین پلی ساکارید طبیعی بعد از سلولز است و مهمترین منبع آن پوسته سختپوستان دریایی و دیوارهی سلولی برخی گیاهان است. در این مطالعه خواص رئولوژیکی نانوژلهای سلولز چوب (W-CNF) ، سلولز سنتز باکتریایی (B-CNF) و کیتین مورد بررسی قرار گرفت. مواد و روشها: برای این کار از هر نانوژل دو غلظت 5/0 و 1 درصد تهیه شد و ویژگیهای رئولوژیکی ژل نانوالیاف سلولزی و نانوالیاف کیتین شامل آزمونهای کرنش نوسانی، کنترل کرنش نوسانی و روبش سرعت برشی با استفاده از رئومتر دورانی مورد ارزیابی قرار گرفت داده های مربوط به رفتارجریان هیدرونانوژل ها توسط مدل های رئولوژیکی مورد برازش قرار گرفت.همچنین برای بررسی خواص مورفولوژیکی و شیمیایی نانوکاغذ تهیه شده و آزمون های SEM,FTIR و AFM در آنها مورد بررسی قرار گرفت. یافتهها: عکسهای میکروسکوپ الکترونی(SEM) نشان داد که متوسط قطری نانوکاغذهای WCNF، BCNF و ChNF به ترتیب برابر با35، 48 و 26 نانومتر بود . تصاویر AFM نشان داد که WCNF دارای اختلاف ارتفاع بیشتری بود که ناشی از آرایش رشته های سلولزی و عدم یکنواختی آنها بود در حالی که در BCNF اختلاف ارتفاع کمتر به دلیل سطح و ساختار یکنواخت تر در ساختار نانوفیبرها بود. بیشتر پیک ها در نانوکاغذهای WCNF، BCNF و ChNF تقریبا شبیه به هم بودند. غلظت 1% از نانوژل سلولز سنتز باکتریایی دارای مدول ذخیره بالاتری نسبت به سایر نانو ژلها داشت. با افزایش غلظت، استحکام بافتی افزایش یافته و نانوژل دارای ساختار قویتری بود. نانو ژلها به دلیل ساختار درهمتنیده و محکمی که دارند در فرکانسهای پایین، رفتار الاستیک خود را حفظ میکنند ولی این ساختار شبکه-ای در فرکانس بالا، استحکام خود را از دست میدهد و حالت دو فاز پیدا میکند و رفتار آن به حالت ویسکوز تغییر میکند. ویسکوزیته نانوژل های با افزایش سرعت برشی بهطور یکنواخت کاهش پیدا کرد. با افزایش غلظت در نانوژل ها ، مقدار ویسکوزیته افزایش یافت.تمام نانوژل ها رفتار شبه پلاستیکی و غیر نیوتنی داشتند. با افزایش غلظت نانوژلها میزان هیسترسیس افزایش پیدا کرد. نانوژلهای سلولز باکتریایی دارای مساحت هیسترسیس بالاتری هستند. نتیجهگیری: تمام نانوژل ها دارای رفتار شبه پلاستیک و غیر نیوتنی را از خود نشان دادند.سلولز سنتز باکتریایی دارای قویترین ساختار بود. مدول ذخیره(G’) به عنوان تابعی از غلظت نانوژل ها، وابستگی زیادی غلظت نانوژل دارد افزایش میزان کرنش میتواند باعث فروپاشی ساختار نانوژل گردد. رفتار رقیق شوندگی با برش میتواند به دلیل پارگی پیوند های ضعیف بین ذرات باشد. | ||
کلیدواژهها | ||
نانوژل؛ سلولز؛ کیتین؛ رئولوژی | ||
مراجع | ||
1.Klemm, D., Krame, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., and Dorris, A. 2011. A new family of nature-based materials. Angewandte Chemie International Edition. 50: 5438-5466.
2.Samir, M.A.S.A., Alloin, F., and Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6: 612-626.
3.Xhanari, K., Syverud, K., and Stenius, P. 2011. Emulsions stabilized by microfibrillated cellulose: the effect of hydrophobization, concentration. Dispersion Science and Technology. 32: 447-452.
4.Gama, M., Gatenholm, P., and Klemm, D. 2013. Bacterial nanocellulose. Publishers: Taylor and Francis. USA
5.Cai, Z., and Kim, J. 2010. Bacterial cellulose / Poly (ethylene glycol) composite: characterization and first evaluation of biocopatibility. Cellulose. 17: 83-91.
6.Eichhorn, S.J., Dufresne, A., Aranguren, M., and Marcovich, N.E. 2010. Review: Current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science. 45: 1-35.
7.Goelzer, F.D.E., Faria-Tischer P.C.S., Vitorino, J.C., Sierakowski, M., and Tischer, C.A. 2009. Production and characterization of nanospheres of bacterial cellulose from acetobacter xylinum from processed rice bark. Materials Science and Engineering. 29: 546-551.
8.Khajavi, R., Jahangirian Esfahani, E., and Sattari, M. 2011. Crystalline structure of microbial cellulose compared with native and regenerated cellulose. International J. of Polymeric Materials. 60: 1178 -1192.
9.Meftahi, A., Khajavi, R., Rashidi, A., Sattari, M., Yazdanshenas, M.E., and Torabi, M. 2010. The effects of cotton gauze coating with microbial cellulose. Cellulose. 17: 199-204.
10.Yang, C., Tang, T., Zhang, S., Dai, K., Gao, C., and Wan, Y. 2010. Preparation and characterization of three- dimension nanostructured macroporous bacterial cellulose/agarose scaffold for tissue engineering. Journal of Porous Materials. 18: 545-552.
11.Kim, J., Cai, Z., Lee, H.S., Choi, G.S., Lee, D.H., and Jo, C. 2010. Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J.of Polymer Research. 18: 739-744.
12.Ma, P., Li, T., Wu, W., Shi, D., Duan, F., Bai, H., Dong, W., and Chen, M. 2014. Novel poly (xylitol sebacate) /hydroxyapatite bio-nanocomposites via one-step synthesis. Polymer Degradation and Stability. 110: 50-55.
13.Hosseini, S.F., Rezaei, M., Zandi, M., and arahmandghavi, F.F. 2015. Fabrication of bio nanoc omposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids. 44: 172-182.
14.Navaneetha Pandiyaraj, K., Arun Kumar, A., RamKumar, M.C., Deshmukh, R.R., Bendavid, A., Pi-Guey, Su., Uday Kumar, S., and Gopinath, P. 2016. Effect of cold atmospheric pressure plasma gas composition on the surface and cyto-compatible properties of low density polyethylene (LDPE) films. Current Applied Physics. 16: 784-79.
15.Pa¨a¨kko¨, M., Ankerfors, M., Kosonen, H., Nyka¨nen, A., Ahola, S., O¨sterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., and Lindstro¨m, T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 8: 1934–1941.
16.Razi, S.M., Motamedzadegan, A., Shahidi, A., and Rashidinejad, A. 2018. The effect of basil seed gum (BSG) on the rheological and physicochemical properties of heat-induced egg albumin gels. Food Hydrocolloids. 82: 268-277.
17.Szyman´ska-Chargot, M., Chylin´ska, M., Pertile, G., Pieczywek, P.M., Cies´lak, K.J., Zdunek, A., and Frac, M. 2019. Influence of chitosan addition on the mechanical and antibacterial properties of carrot cellulose nanofiber film. Cellulose. 26: 9613–9629.
18.Volova, T.G., Anna, A., Shumilova, A.A., Shidlovskiy, I.P., Elena, D., Nikolaeva, E.D., Sukovatiy, A.G., Alexander, D., Vasilieva, A.D., and Shishatskaya, E.I. 2018. Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polymer Testing. 65: 54–68.
19.Yousefi, H., Faezipour, M., Hedjazi, S., Mousavi, M.M., Azusa, Y., and Heidari, A.H. 2013. Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Industrial Crops and Products. 43: 732-737.
20.Yousefi, H., Azad, S., Mashkour, M., and Khazaeian, A. 2018. Cellulose nanofiber board. Carbohydrate Polymers. 187: 133-139.
21.Derakhshandeh, B., Kerekes, R.J., Hatzikiriakos, S.G., and Bennington, C.P.J. 2011. Rheology of pulp fiber suspensions: acriticalreview. Chemical Engineering Science. 66: 3460–3470.
22.El Miria, N., Abdelouahdi, K., Barakat, A., Zahouily, M., Fihri, A., Solhye, A., and El Achabye, A. 2015. Bio-nanocomposite films reinforced with cellulose nnanocrystals: Rheology of film-forming solutions, transparency, water vapor barrierand tensile properties of filmsNassima. Carbohydrate Polymers. 129: 156–167.
23.Noshirvani, N., Hong, W., Ghanbarzadeh, B., Fasihi, H., and Montazami, R. 2017. Study of cellulose nanocrystal doped starch-polyvinyl alcohol bionanocomposite films. International J. of Biological Macromolecules. 107: 2065-2074.
24.Wang, Z., Qiao, X., and Sun, K. 2018. Rice straw cellulose nanofibrils reinforced poly (vinyl alcohol) composite films. Carbohydrate Polymers. 197: 442–450.
25.Bai, L., Liang, H., Crittenden, J., Qu, F., Ding, A., Ma, J., Du, X., Guo, S., and Li, G. 2015. Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by NOM fractions. Journal of membrane science and research. 492: 400-411.
26.Xu, Y., Atrens, A.D., and Stokes, J.R. 2017. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods. J. of Colloid and Interface Science. 496: 130–140.
27.Kanmani, P., and Rhim, J. W. 2014. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids. 35: 644-652.
28.Danial, W.H., Abdul Majid, Z., Mohd Muhid, M.N., Triwahyono, S., Bakar, M.B., and Ramli, Z. 2015. The reuse of wastepaper for the extraction of cellulose nano-crystals. Carbohydrate Polymers. 118: 165-169.
29.Hyun, K., Wilhelm, M.O., Klein, C., and Cho, K.S. 2011. A review of nonlinear oscillatory shear tests: analysis and application oflarge amplitudeillatory shear (LAOS). Progress in Polymer Science. 36: 1697-1753.
30.Behrouzian, F., Razavi, S., and Alghooneh A. 2017. Evaluation of interactions of biopolymers using dynamic rheological measurements: Effect of temperature and blend ratios. Journal of Applied Polymer Science. 134:1-13.
32.Rezayati, P., Dehghani, M., Afra, E., and Shakeri, A. 2013. Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose. 20: 727-740.
33.Khorami, M., Hosseini-Parvar, S., and Motamed zadegan, A. 2021. The influence of Basil seed gum on the stability, particle size and rheological properties of oil-in-water emulsions stabilized by sodium caseinate. Journal of Food Processing and Preservation, 12(2), 139-156. doi: 10.22069/ejfpp.2021.9120.1261.
33.Razavi, S.M.A., and Karazhiyan, H. 2009. Flow properties and thixotropy of selected hydrocolloids: Experimental and modeling studies. Food Hydrocolloids. 23: 908-912.
34.Hemphill, T., Campos, W., and Pilehvari, A. 1993. Yield-power law model more accurately predicts mud rheology. Oil & Gas J. 91: 34. 45–50.
35.Taherian, A., Sadeghimahounak, A., Mirzaie, H., Alami, M., and Sadeghi, A. 2021. Effect of Date Syrup as substitute with sugar on the physicochemical, rheological and sensory properties of vanilla Ice Cream on Based whey. Journal of Food Processing and Preservation, 12(2), 157-170. doi: 10.22069/ ejfpp.2021. 6604.1117.
36.Motamedzadegan, A., Omidbakhsh Amiri, E., Jamshidi, M., and Khosravi rad, T. 2018. Effect of concentration on the rheological and physicochemical properties of lemon juice. Iranian Food Science and Technology Research J. 14: 1. 119-131. | ||
آمار تعداد مشاهده مقاله: 260 تعداد دریافت فایل اصل مقاله: 213 |