
تعداد نشریات | 13 |
تعداد شمارهها | 649 |
تعداد مقالات | 6,787 |
تعداد مشاهده مقاله | 9,527,630 |
تعداد دریافت فایل اصل مقاله | 8,947,708 |
تاثیر مایه زنی قارچ های میکوریز آربوسکولار توأمان با باکتریهای محرک رشد بر شاخصهای رشدی و فتوسنتزی دو رقم گیاه گلرنگ (Carthamus tinctorius) | ||
پژوهشهای تولید گیاهی | ||
دوره 32، شماره 2، تیر 1404، صفحه 175-192 اصل مقاله (1.18 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2024.22514.3156 | ||
نویسندگان | ||
سونیا عقیقی* 1؛ نرگس حاتمی2؛ شکوفه خاندانی3 | ||
1نویسنده مسئول، استادیار گروه بیماریشناسی گیاهی، پژوهشکده فناوری تولیدات گیاهی، پژوهشگاه افضلیپور، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
2استادیار گروه بیماریشناسی گیاهی، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، تهران، ایران. | ||
3دانشجوی دکتری ژنتیک و بهنژادی گیاهی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران | ||
چکیده | ||
سابقه و هدف: با توجه به نقش بسزای گیاهان گیاهان دارویی از جمله گلرنگ در سطح کشور و استان کرمان، کاربرد برخی میکروارگانیسمها مانند قارچهای میکوریز آربوسکولار و باکتریهای محرک رشد به منظور بهبود رشد و عملکرد گیاه مزبور میتواند حائز اهمیت باشد. گیاهان دارویی به علت داشتن متابولیت های ثانویه دارای خصوصیات دارویی مفیدی می باشند و همچنین این گیاهان در حفظ اکوسیستمها، توسعه اقتصادی، امنیت غذایی، ذخایر ژنتیکی و خودکفایی دارویی نقش مهمی در سطح ملی ایفا می نمایند. بهدلایل مختلفی کشت زراعی گیاهان دارویی چندان ساده و گاهی امکانپذیر نمیباشد از این دلایل میتوان سرعت رشد پایین، نیازهای محیطی خاص، سرعت جوانهزنی پایین، دوره خفتگی بذر و حساسیت به برخی از آفات و بیماریها را نام برد. از آنجائیکه در اکوسیستم های طبیعی، 90 درصد ریشه گیاهان با قارچهای میکوریز همزیستی دارند و حاصل این همزیستی، فعالیت قارچ در جهت جذب و انتقال عناصر غذایی به گیاه میزبان و دریافت ترکیبات کربنه حاصل از فتوسنتز گیاه میزبان توسط قارچ همزیست میباشد از اینرو چنین گیاهانی، بهدلیل جذب بیشتر عناصر غذایی و آب، دارای رشد و عملکرد بهتری هستند و تحمل بیشتری در برابر انواع تنشهای زیستی (مانند عوامل بیماریزا) و غیر زیستی (مانند کمبود یا مسمومیت مواد غذایی، خشکی، شوری و عناصر سنگین) بروز می دهند . ازاینرو، استفاده از کودهای زیستی مبتنی بر قارچهای میکوریز آربوسکولار یکی از گزینههای امیدبخش به منظور توسعه سیستمهای کشاورزی با صرفهجویی در منابع و مصرف ترکیبات شیمیایی و احیاء مراتع طبیعی محسوب می گردد. مواد و روش: به این منظور، آزمایشی در گلخانه تحقیقاتی پژوهشکده فناوری تولیدات گیاهی دانشگاه شهید باهنر کرمان بهصورت فاکتوریل در قالب طرح کاملا تصادفی در سه تکرار روی دو رقم گلرنگ (گلدشت و6N) انجام گردید. در این بررسی از دوگونه قارچ میکوریز آربوسکولار Funneliformis mosseae و Rhizophagus intraradicesبصورت توامان و دو گونه باکتری Bacillus subtilis و Pseudomonas putida استفاده گردید و تأثیر این تیمارها بر شاخصهای رشدی، عملکردی و فیزیولوژیکی گیاه مورد بررسی قرار گرفت. یافته ها: نتایج نشان داد قارچ های میکوریز آربوسکولار و باکتری های محرک رشد باعث افزایش شاخصهای رشدی، عملکردی و فتوسنتزی در هر دو رقم گلرنگ میگردد. بهطور کلی رقم گلدشت واکنش بیشتری به مایهزنی میکروبی در مقایسه با رقم6N نشان داد. از بین تیمارها، تیمار قارچهای میکوریز و تیمار کاربرد توامان قارچهای میکوریز همراه با هر دو باکتری در دو رقم صفات بیشتری را تحت تاثیر قرار دادند. همچنین کاربرد توامان قارچهای میکوریز همراه با هر دو باکتری باعث افزایش 40 درصدی عملکرد دانه در بوته شد. نتیجهگیری: اثرات متقابل بین ژنوتیپ گیاه و مایهزنی میکروبی بر صفات مورفولوژیکی و فتوسنتزی، نشان میدهد هر دو عامل میتوانند در بهبود رشد و عملکرد گیاهان دخیل باشند.در نتیجه، استفاده از ترکیبات میکروبی، بهویژه ترکیب قارچ میکوریزا و باکتریهای تقویت کننده رشد، بهعنوان یک روش پایدار و موثر برای بهبود کیفیت و عملکرد محصولات کشاورزی، قابلیت توصیه و استفاده دارد. | ||
کلیدواژهها | ||
پارامترهای رشدی؛ باکتریهای محرک رشد؛ گلرنگ؛ قارچهای میکوریز آربوسکولار | ||
مراجع | ||
1.Hamilton, A. C. (2004). Medicinal plants, conservation and livelihoods. Biodiversity & Conservation, 13, 1477-1517.
2.Kerem, Z., Lev-Yadun, S., Gopher, A., Weinberg, P., & Abbo, S. (2007). Chickpea domestication in the Neolithic Levant through the nutritional perspective. Journal of Archaeological Science, 34(8), 1289-1293.
3.Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154(2), 275-304.
4.Smith, S. E., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250.
5.Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R., & Jackson, L. E. (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 566, 1223-1234.
6.Keymer, D. P., & Lankau, R. A. (2017). Disruption of plant–soil–microbial relationships influences, plant growth. Journal of Ecology, 105(3), 816-827.
7.Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance, Frontiers in Plant Science, 10, 1068.
8.Kobae, Y. (2019). The Infection Unit: An overlooked conceptual unit for arbuscular mycorrhizal function. Root Biology-Growth, Physiology, and Functions, 1-13.
9.Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571-586.
10.Felestrino, É. B., Santiago, I. F., Freitas, L. D. S., Rosa, L. H., Ribeiro, S. P., & Moreira, L. M. (2017). Plant growth promoting bacteria associated with Langsdorffia hypogaea-rhizosphere-host biological interface: a neglected model of bacterial prospection. Frontiers in microbiology, 8, 172.
11.Abbaspour, H. (2010). Investigation of the effects of vesicular arbuscular mycorrhiza on mineral nutrition and growth of Carthamus tinctorius under salt stress conditions, Russian Journal of Plant Physiology, 57(4), 526-531.
12.Shahraki, A., & Ranjbar, M. M. S. M. (2022). The effect of rhizospheric bacteria on the physiological and biochemical characteristics of safflower (Carthamus tinctorius). Nova Biologica Reperta, 9(3), 213-221. [In Persian]
13.Ghouchani, R., Abbaspour, H., Rusta, M. J., SaidiSar, S., & Saed-Moucheshi, A. (2014). Mycorrhizal inoculation can decreases negative effect of salinity on safflower varieties, International Journal of Biosciences, 5(11), 76-85.
14.Xu, Y., Fan, Y., Yu, Y. H., Xu, C. Y., & Ge, Y. (2014). Effects of arbuscular mycorrhizal fungus on the growth and physiological salt tolerance parameters of Carthamus tinctorius seedlings under salt stress. Chinese Journal of Ecology, 33(12), 3395.
15.Lack, S., Ghooshchi, F., & Hadi, H. (2013). The effect of crop growth enhancer bacteria onyield and yield components of safflower (Carthamus tinctorius L.). International Journal of Farming and Allied Sciences, 2(20), 809-815.
16.Vivas, A., Marulanda, A., Ruiz-Lozano, J. M., Barea, J. M., & Azcón, R. (2003). Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza, 13, 249-256.
17.Hatami, N., Mehrabi Gohari, E., Tashakorizadeh, M., & sedaghati, E. (2024). Studying the effect of drought stress and arbuscular mycorrhizal fungi on some morphological and physiological traits of Artemisia dracunculus. Genetics and Plant Breeding, 1(1), 97-118. [In Persian]
18.Bagheri, V., Shamshiri, M. H., Alaei, H., & Salehi, H. (2019). The role of inoculum identity for growth, photosynthesis, and chlorophyll fluorescence of zinnia plants by arbuscular mycorrhizal fungi under varying water regimes. Photosynthetica, 57(2).
19.Belete, D. A., Tewachew, A., Bitew, M., & Mulualem, T. (2022). Correlation and path coefficient studies for yield and its components of upland rice (Oryza sativa L.) in North Western Ethiopia. Journal of Scientific Agriculture, 6, 14-19.
20.Park, J. R., Seo, J., Park, S., Jin, M., Jeong, O. Y., & Park, H. S. (2023). Identification of potential QTLs related to grain size in rice. Plants, 12(9), 1766.
21.Begum, M., Rai, V. R., & Lokesh, S. (2003). Effect of plant growth promoting rhizobacteria on seed borne fungal pathogens in okra, Indian Phytopathology, 56(2), 156-158.
22.Canbolat, M. Y., Bilen, S., Çakmakçı, R., Şahin, F., & Aydın, A. (2006). Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology and Fertility of Soils, 42, 350-357.
23.Entesari, M., Sharifzadeh, F., Ahmadzadeh, M., & Farhangfar, M. (2013). Seed biopriming with Trichoderma species and Pseudomonas fluorescent on growth parameters, enzymes activity and nutritional status of soybean. International Journal of Agronomy and Plant Production, 4(4), 610-619.
24.Cardarelli, M., Woo, S. L., Rouphael, Y., & Colla, G. (2022). Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants, 11(3), 259.
25.Raei, Y., Shariati, J., & Weisany, W. (2015). Effect of biological fertilizers on seed oil, yield and yield components of safflower (Carthamus tinctorius L.) at different irrigation levels. The Journal of Agricultural Science. 25, 65-84. [In Persian] 26.Tonguç, M., Önder, S., Mutlucan, M., & Erbaş, S. (2023). Role of rhizobacteria inoculations on agronomic and quality characteristics of safflower (Carthamus tinctorius L.) under unfertilized conditions. Turkish Journal of Field Crops, 28(1), 79-86.
27.Ekin, Z. (2020). Co-application of humic acid and bacillus strains enhances seed and oil yields by mediating nutrient acquisition of safflower (Carthamus tinctorius L.) plants in a semi-arid region. Applied Ecology and Environmental Research, 18, 1883-1900.
28.Santoyo, G., Guzmán-Guzmán, P., Parra-Cota, F. I., Santos-Villalobos, S. D. L., Orozco-Mosqueda, M. D. C., & Glick, B. R. (2021). Plant growth stimulation by microbial consortia. Agronomy, 11(2), 219.
29.Khan, M. Y., Nadeem, S. M., Sohaib, M., Waqas, M. R., Alotaibi, F., Ali, L., & Al-Barakah, F. N. (2022). Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Frontiers in Microbiology, 13, 958522.
30.Nosheen, A., Bano, A., Ullah, F., Farooq, U., Yasmin, H., & Hussain, I. (2011). Effect of plant growth promoting rhizobacteria on root morphology of Safflower (Carthamus tinctorius L.). African Journal of Biotechnology, 10(59), 12638-12649.
31.Prasad, R. D., Navaneetha, T., & Rao, L. V. (2016). Plant growth promotion and induced defense response in safflower (Carthamus tinctorius L.) by Trichoderma. Journal of Biological Control, 40-48.
32.Dimitrov, S. G., & Sabluk, V. T. (2022). Formation of the leaf surface area of agricultural crops depending on the mass of the root system according to its mycorrhization. Bioenergy, 1-2, 29-31.
33.Li, X., Zhao, R., Li, D., Wang, G., Bei, S., Ju, X., & Zhang, J. (2023). Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil. Microbiome, 11(1), 45.
34.Lies, A., Delteil, A., Prin, Y., & Duponnois, R. (2018). Using mycorrhiza helper microorganisms (MHM) to improve the mycorrhizal efficiency on plant growth. Role of rhizospheric microbes in soil: volume 1: stress management and agricultural sustainability, 277-298.
35.Abdalla, M., & Ahmed, M. A. (2021). Arbuscular mycorrhiza symbiosis enhances water status and soil-plant hydraulic conductance under drought. Frontiers in Plant Science, 12, 722954.
36.Meng, P., Chen, W., Feng, H., Zhang, S., Wang, J., Ma, W., & Wang, C. (2022). Effect of inoculation with arbuscular mycorrhizal fungi on growth of Catalpa bungei. New Zealand Journal of Forestry Science, 52.
37.Beltayef, H., Saidi, W., Hajri, R., Mechri, M., & Melki, M. (2023). Mycorrhizal fungi inoculation effect on plant growth and phosphorus metabolism of snap bean variety" Contender. GSC Advanced Research and Reviews, 15(03), 201-206.
38.Lotfollahi, A., Bolandnazar, S., Aliasgharzad, N., Khoshru, B., & Siami, A. (2021). Effects of Inoculation with Arbuscular Mycorrhiza and Mycorrhiza-Like Fungi on Growth and Phosphorus Uptake of Coriander. Journal of Agricultural Science and Sustainable Production, 31(1), 87-101. [In Persian]
39.Teimory, H., Ghabooli, M., & Movahedi, Z. (2021). Effects of different inoculation methods of Serendipita indica on some morphophysiological, biochemical, and yield traits of tomato under drought stress. Iranian Journal of Plant Biology, 13(2), 1-22. [In Persian]
40.Naseri, R., Barary, M., Zarea, M. J., Khavazi, K., & Tahmasebi, Z. (2017). Effect of plant growth promoting bacteria and Mycorrhizal fungi on growth and yield of wheat under dryland conditions. Journal of Sol Biology, 5(1), 49-66. [In Persian]
41.Ghorbani, A., Pirdashti, H., & Ramezani, M. (2016). Effect of endophyte fungal symbiosis of Piriformospora india on morphological character and photosynthesis pigments in tomato (Solanum lycopersicum L.). New Cellular and Molecular Biotechnology Journal, 6(24), 57-64. [In Persian] 42.Jahandideh Mahjen-Abadi, V. A., Sepehri, M., & Rahmani Iranshahi, D. (2014). Effect of Piriformospora indica fungus inoculation on uptake and transportation of some nutrients in two wheat cultivars. Journal of Soil Management and Sustainable Production, 4(3), 155-173. [In Persian]
43.Muhammad, M., Isnatin, U., Soni, P., & Adinurani, P. G. (2021). Effectiveness of mycorrhiza, plant growth promoting rhizobacteria and inorganic fertilizer on chlorophyll content in Glycine max L. cv. Detam-4 Prida, the 1st International Conference on Bioenergy and Environmentally Sustainable Agriculture Technology, 226.
44.Budi, S. W., Arty, B., Wibowo, C., & Sukendro, A. (2020). Influence of arbuscular mycorrhizal fungi and soil ameliorants on the mycorrhizal colonization, Chlorophyll content, and performance growth of Two tropical tree seedlings grown in soil media with high aluminum content. Malaysian Applied Biology, 49(1), 41-53.
45.Deshmukh, R. B., Mane, S. G., Phatake, Y. B., Marathe, R. J., Sandhya, Sudhakar, D., Dange, Bharat, & Shinde. (2023). Effect of arbuscular mycorrhizal fungi on growth and development of Zea mays L. Research Journal of Biotechnology, 18(7), 16-22.
46.Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., & Ahammed, G. J. (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology, 8, 251.
47.Ran, Q., Zhang, S., Arif, M., Yin, X., Chen, S., & Ren, G. (2024). Effects of arbuscular mycorrhizal fungi on carbon assimilation and ecological stoichiometry of maize under combined abiotic stresses. Journal of Plant Ecology, 17(2), 10.
48.Peng, Z., Zulfiqar, T., Yang, H., Wang, M., & Zhang, F. (2024). Effect of Arbuscular Mycorrhizal Fungi (AMF) on photosynthetic characteristics of cotton seedlings under saline-alkali stress. Scientific Reports, 14(1), 8633.
49.Kebede, T. G., Birhane, E., Ayimut, K. M., & Egziabher, Y. G. (2023). Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels. Journal of Arid Land, 15(8), 975-988.
50.Chandrasekaran, M., Chanratana, M., Kim, K., Seshadri, S., & Sa, T. (2019). Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Frontiers in Plant Science, 10, 457. | ||
آمار تعداد مشاهده مقاله: 225 تعداد دریافت فایل اصل مقاله: 28 |