| تعداد نشریات | 13 |
| تعداد شمارهها | 654 |
| تعداد مقالات | 6,815 |
| تعداد مشاهده مقاله | 9,755,883 |
| تعداد دریافت فایل اصل مقاله | 9,145,247 |
تأثیر سیستم های ریشه ای و نوع گیاه بر کیفیت فیزیکوشیمیایی و شاخص های پایداری ساختمان خاک | ||
| مجله مدیریت خاک و تولید پایدار | ||
| دوره 15، شماره 2، تیر 1404، صفحه 121-142 اصل مقاله (1.54 M) | ||
| نوع مقاله: مقاله کامل علمی پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22069/ejsms.2025.22538.2159 | ||
| نویسندگان | ||
| امید اقبالی* 1؛ حجت امامی2؛ رضا خراسانی3 | ||
| 1دانشجوی دکتری ، گروه علوم خاک، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
| 2استاد، گروه علوم خاک، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
| 3دانشیار، گروه علوم خاک، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
| چکیده | ||
| ریشه گیاه اثرات محسوسی بر خاک داشته و منجر به تغییرات معنیدار بر ویژگیهای خاک میشود که این تغییرات تأثیر زیادی بر پتانسیل فرسایشپذیری خاک، مدیریت صحیح زمین و محصول دارد و بسیاری از عوامل شناخته شده مؤثر بر خاک مانند فعالیت میکروارگانسیمها و خاکورزی و در نهایت ساختمان خاک را تحت تأثیر قرار میدهد. ساختمان خاک بهدلیل تأثیر بر سلامت خاک، کشاورزی پایدار و ترسیب کربن از اهمیت فراوانی برخوردار است. با توجه به اهمیت پایداری ساختمان خاک در کشاورزی پایدار و تأثیر گیاهان با سیستمهای مختلف ریشهای (یکی از مهمترین عوامل مؤثر بر ویژگیهای فیزیکی خاک) بر پایداری ساختمان و سایر ویژگیهای فیزیکوشیمیایی خاک، هدف از این پژوهش بررسی تأثیر سیستمهای ریشهای گیاهان یونجه، زیره سبز، نخود، گندم و جو بر ویژگیهای فیزیکی و شیمیایی خاک در اعماق متفاوت است. مواد و روشها این پژوهش در قالب طرح بلوکهای کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشگاه فردوسی مشهد، استان خراسان رضوی انجام شد. کرتها با ابعاد 100×10 متر و با سیستمهای خاکورزی مشخص، مدیریت شده و گیاهان یونجه، زیره سبز، نخود، گندم و جو بر اساس سیستمهای ریشهای، انتخاب و کشت شدند. قبل از کشت و در انتهای فصل رشد (زمان برداشت محصول)، نمونههای خاک دست خورده و دست نخورده از چهار عمق 10-0، 20-10، 30-20 و 40-30 سانتیمتری اطراف ریشه گیاهان جمعآوری شدند. همچنین ریشه هر گیاه برداشت شد. نمونههای خاک برای ویژگیهای شیمیایی و فیزیکی از جمله عناصر غذایی پرمصرف، نفوذپذیری و شاخصهای پایداری ساختمان، آنالیز شدند. ویژگیهای ریشه شامل چگالی طولی ریشه و چگالی ریشه اندازهگیری شد. از نرم افزار SAS برای آنالیز تجزیه واریانس و از Microsoft Excel برای رسم نمودارها استفاده شد. همچنین مقایسه میانگین تیمارها با استفاده از آزمون دانکن در سطح احتمال 5 درصد انجام شد. یافتهها نتایج نشان داد که بیشترین مقدار شوری در خاک زیرکشت گیاه گندم و جو (بهترتیب 3/2 و 6/1 دسیزیمنس بر متر) در عمقهای 0 تا 40 سانتیمتر خاک مشاهده شد. خاک زیرکشت گیاه زیره سبز حاوی بیشترین مقادیر کربن آلی در عمقهای 10-0 و 20-10 سانتیمتر بود (بهترتیب 79/0 و 76/0 درصد) و کمترین مقدار کربن آلی خاک (2/0 درصد) در عمق 40-30 سانتیمتری مشاهده شد. مقدار نیتروژن در خاک زیرکشت گیاه نخود (40-0 سانتیمتر) بهطور معنیدار بیشتر از سایر گیاهان بود و بیشترین مقدار آن در عمق 40-30 سانتیمتری خاک (1/0 درصد) به دست آمد. با افزایش عمق خاک، مقدار هدایت هیدرولیکی اشباع خاک کاهش یافت و بیشترین آن در عمق 10-0 سانتیمتری (44/2 سانتیمتر بر دقیقه) گیاه یونجه و کمترین آن در عمق 40-30 سانتیمتری (49/0 سانتیمتر بر دقیقه) گیاه گندم بهدست آمد. بیشترین مقدار شاخص پایداری ساختمان خاک (15/2 درصد) در خاک زیر کشت گیاه زیره سبز و کمترین مقدار آن (48/0 درصد) در عمق 40-30 سانتیمتری خاک زیرکشت یونجه به دست آمد. میانگین شاخص پایداری خاک در تمام گیاهان مورد مطالعه کمتر از 5 درصد بود که نشاندهنده تخریب ساختمان خاک ناشی از مقدار ناکافی کربن آلی در خاک است. نتیجهگیری نتایج این پژوهش نشان داد که گیاهان حتی با یکسان بودن نوع سیستم ریشه، اثرات متفاوتی بر ویژگیهای فیزیکی و شیمیایی خاک دارند. به طور کلی خاک زیرکشت گیاه زیره سبز کمترین شوری و بیشترین ماده آلی را داشت در نتیجه باعث افزایش شاخص پایداری ساختمان خاک شد. همچنین سیستم ریشه گیاه یونجه در ایجاد منافذ درشت و افزایش هدایت هیدرولیکی اشباع خاک بسیار موثر بود. | ||
| کلیدواژهها | ||
| بافت خاک؛ پایداری ساختمان خاک؛ چگالی طولی ریشه؛ ریشه گیاه؛ میانگین وزنی قطر خاکدانهها | ||
| مراجع | ||
|
1.Degu, M., Melese, A., & Tena, W. (2019). Effects of Soil Conservation Practice and Crop Rotation on Selected Physicochemical Properties: The Case of Dembecha District, Northwestern Ethiopia. Applieid and Environment Soil Science. Article ID, 6910879, 1-14. doi:10.1155/ 2019/6910879.
2.Gibbs, R. J., & Reid, J. B. (1988). A Conceptual Model of Changes in Soil Structure Under Different Cropping Systems. In: Stewart, B. A. (eds), Advances in Soil Science, 8(8), 123-149. doi:10.1007/978-1-4613-8771-8-3.
3.Bronick, C. J., & Lal, R. (2005). Soil Structure and Management: A Review. Geoderma, 124, 3-22. doi: 10.1016/j. geoderma.2004.03.005.
4.Zhao, F. Z., Han, X. M., Yang, G. H., Feng, Y. Z., & Ren, G. X. (2014). Soil Structure and Carbon Distribution in Subsoil affected by Vegetation restoration. Plant, soil and Environment, 60(1), 21-26. http://www.agriculture journals.cz/web/pse.htm.
5.Cai, G., & Ahmed, M. A. (2022). The Role of Root Hairs in Water Uptake: recent advances and future perspectives. Journal of Experimental Botany, 73(11), 3330-3338. doi:10.1093/ jxb/erac114.
6.Materechera, S. A., Dexter, A. R., & Alston, A. M. (1992). Formation of Aggregates by Plant Roots in Homogenised Soils. Plant and Soil, 142, 69-79. doi:10.1007/BF00010176.
7.Mimmo, T., Del Buono, D., Terzano, R., Tomasi, N., Vigani, G., Crecchio, C., Pinton, R., Zocchi, G., & Cesco, S. (2014). Rhizospheric Organic Compounds in the Soil–Microorganism–plant System: Their Role in Iron Availability. European Journal of Soil Science, 65(5), 629-642. doi:10.1111/ejss.12158.
8.Entezami, E., Mosadeghi, M. R., Shirvani, M., & Khalili, B. (2021). The Effect of Plant Root System on the Structural Stability of two Soils with Different Textures. The 17th Iran Congress of Soil Sciences and the 4th National Conference on Water Management in the Farm of Wise Soil Rejuvenation and Wise Water Governance. [In Persian]
9.Hosseini Ramsheh, B. (2017). Effect of Cultivated and Wild barley genotypes on Structural and Physical Quality Indicators of Rhizosphere soil. Masters’ Thesis in Soil Science, Faculty of Agriculture, Isfahan University of Technology. [In Persian] 10.Carrizo, M. E., Alesso, C. A., Cosentino, D., & Lmhoff, S. (2015). Aggregation Agents and Structural Stability in Soils with Different Texture and Organic Carbon Contents. Scientia Agricola, 72, 75-82.
11.Rogers, E. D., & Benfey, P. N. (2015). Regulation of Plant Root System Architecture: Implications for Crop Advancement. Current Opinion in Biotechnology, 32, 93-98. doi: 10.1016/ j.copbio.2014.11.015
12.Le Bissonnais, Y., Prieto, I., Roumet, C., Nespoulous, J., Metayer, J., Huon, S., Villatoro, M., & Stokes, A. (2017). Soil Aggregate Stability in Mediterranean and Tropical agro-ecosystems: Effect of Plant Roots and Soil Characteristics. Plant Soil, 424, 303-317.
13.Gee, G. W., Bauder, J. W., & Klute, A. (1986). Methods of Soil Analysis, part 1, physical and mineralogical methods. Soil Science Society of America, American Society of Agronomy, Ed 2, 1188p.
14.Sims, J. T. (1996). Lime Requirement. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 491-515.
15.Walkley, A., & Black, I. A. (1934). An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37, 29-38.
16.Rhoades, J. D. (1996). Salinity: Electrical Conductivity and Total Dissolved Soilds. Method of soil analysis, parss: chemical methods. Madison. Wisconsin, USA, 417-436.
17.Olsen, S. R., & Sommers L. E. (1986). Phosphorous. Methods of Soil Analysis. Part 2, Soil Science Society of American Journal. Madison, WI. PP. 403-427. In: Page, A.L., Miller, R.H. and Keeney, D.R. (Eds).
18.Bremner, J. M., & Mulvaney, C. S. (1983). Nitrogen-total. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 595-624. doi:10.2134/agronmonogr9.2. 2ed.c31.
19.Carter, M. R., & Gregorich, E. G. (Eds.). (2007). Soil sampling and methods of analysis. CRC press.
20.Van Bavel, C. H. M. (1949). Mean Weight-Diameter of Soil Aggregates as a Statistical Index of Aggregation. Proceedings. Soil Science Society of America Journal, 14, 20-23. doi:10.2136/ sssaj1950.036159950014000c0005x.
21.Pieri, C. J. (1992). Fertility of Soils: A Future for Farming in the West African Savannah. Springer Science & Business Media, 10, 273.
22.Reynolds, W. D., Drury, C. F., Tan, C. S., Fox, C. A., & Yang, X. M. (2009). Use of Indicators and Pore Volume-function Characteristics to Quantify Soil Physical Quality. Geoderma, 152(3-4), 252-263.
23.Klute, A., & Dirksen, C. (1986). Hydraulic Conductivity and Diffusivity: Laboratory Methods. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 687-734. doi:10.2136/sssabookser5.1. 2ed.c28.
24.Otto, R., Trivelin, P. C. O., Franco, H. C. J., Faroni, C. E., & Vitti, A. C. (2009). Root System Distribution of Sugar Cane as Related to Nitrogen Fertilization, Evaluated by Two Methods: Monolith and Probes. R. Bras. Ci. Solo, 33, 601-611.
25.Ren, B., Li, X., Dong, Sh., Liu, P., Zhao, B., & Zhang, J. (2018). Soil Physical Properties and Maize Root Growth under Different Tillage Systems in the North China Plain. The Crop Journal, 6(6), 669-676.
26.Vannoppen, W., De Batets, S., Keeble, J., Dong, Y., & Poesen, J. (2017). How Do Root and Soil Characteristics Affect the Erosion-reducing Potential of Plant Species? Ecological Engineering, 109, 186-195. doi: 10.1016/j.ecoleng. 2017.08.001.
27.Marschner, P. (2012). Marschner's Mineral Nutrition of Higher Plants. Academic Press.
28.Khadem, A., Golchin, A., Mashhadi Jafarloo, A., Zaree, E., & Naseri, E. (2015). Effect of Highly Acidified Soil on Soil Nutrient Availability and Corn (Zea mays L.) Growth. Agronomy Journal. 28(107), 1-7. doi:10.22092/ AJ.2015.105679. [In Persian]
29.Marchiol, L., Iafisco, M., Fellet, G., & Adamiano, A. (2020). Nanotechnology Support the Next Agricultural Revolution: Perspectives to Enhancement of Nutrient Use Efficiency. Advances in agronomy, 161, 27-116. doi: 10.1016/ bs.agron.2019.12.001.
30.Najafi, N. A., & Mardomi, S. (2013). Effects of Sunflower Cultivation, Manure and Sewage Sludge on Available of Elements, pH and EC of an Alkaline Soil. Applied Soil Research, 1(1), 1-16. [In Persian]
31.Yan, F., Schubert, S., & Mengel, K. (1996). Soil pH Changes During Legume Growth and Application of Plant Material. Biology and Fertility of Soils, 23, 236-242. doi:10.1007/BF00 335950.
32.Mut, H., & Ayan, I. (2011). Effects of Different Improvement Methods on some Soil Properties in a Secondary Succession Rangeland. Journal of Biological and Environmental Sciences, 5(13), 11-16.
33.Datta, A., Basak, N., Chaudhari, S. K., & Sharma, D. K. (2015). Soil properties and Organic Carbon Distribution under Different Land uses in Reclaimed Sodic Soils of North-West India. Geoderma Regional, 4, 134-146. doi: 10.1016/j. geodrs.2015.01.006.
34.Unkovich, M., Baldock, J., & Farquharson, R. (2018). Field Measurement of Bare Soil Evaporation and Crop Transpiration, and Transpiration Efficiency, for Rained Grain Crops in Australia-A review. Agricultural Water Management, 205, 7-80. doi: 10.1016/j.agwat.2018. 04.016. 35.Jahantigh, M. (2021). Study on Soil Properties at Various Depths of Hamoun Ecosystem to Creative Tourism Environment. Human and Environment, 56, 201-211. [In Persian]
36.Poirier, V., Roumet, C., & Munson, A. D. (2018). The Root of the Matter: Linking Root Traits and Soil Organic Matter Stabilization Processes. Soil Biology and Biochemistry, 120, 246-259. doi: 10.1016/j.soilbio.2018.02.016
37.Crow, E. S., Lajtha, K., Filley, T. R., Swanston, Ch. W., Bowden, R. D., & Caldwell, B. A. (2009). Sources of Plant-derived Carbon and Stability of Organic Matter in Soil: implications for global change. Global Change Biology, 15, 2003-2019. doi:10.1111/j.1365-2486.2009. 01850.x
38.Jobbágy, E. G., & Jackson, R. B. (2000). The Vertical Distribution of Soil Organic Carbon and its Relation to Climate and Vegetation. Ecological applications, 10(2), 423-436. doi:10.1890/1051-0761(2000)010[0423: TVDOSO]2.0.CO;2.
39.Khademi, Z., Malakouti, M. J., & Jones, D. L. (2008). Rhizosphere Organic Acids and Nutrient Availability. Iranian Journal of Soil Research, 21(2), 171-189. doi:20.1001.1.22287124.1396.21.2.2.6. [In Persian]
40.Khosravi, H. (2015). Evaluation of Some Physiological Characteristics of Rhizobium Leguminosarum BV. Viciae native to Soils of Iran. Journal of Molecular and Cellular Research (Iranian Journal of Biology), 28(4), 513-523. doi:20.1001.1.23832738.1394.28.4.6.7. [In Persian]
41.Kumar, K., & Goh, K. M. (2000). Biological Nitrogen Fixation, Accumulation of Soil Nitrogen and Nitrogen Balance for White Clover (Trifolium repens L.) and Field Pea (Pisum sativum L.) Grown for Seed. Field Crops Research, 68(1), 49-59. doi:10.1016/S0378-4290(00)00109-x.
42.Torppa, A., Forkman, J., Maaroufi, N. I., Taylor, A. R., Vahter, T., Vasar, M., Weih, M., Opik, M., & Viketoft, M. (2023). Soil Compaction Effects on Arbuscular Mycorrhizal Symbiosis in Wheat depend on Host Plant Variety. Plant Soil, 493, 555-571. doi:10.1007/ s11104-023-06250-w.
43.Karimi Amirkiasar, M., Kavoosi, M., & Shokri Vahed, H. (2012). Phosphorus Critical Concentration in Paddy Soils of Guilan Province. Water and Soil Science Journal, 23(1), 123-134. [In Persian]
44.Kong, M., Kang, J., Han, Ch., Gu, Y., Siddique, K. H. M., & Li, F. )2020). Nitrogen, Phosphorus, and Potassium Resorption Responses of Alfalfa to Increasing Soil Water and P Availability in a Semi-Arid Environment. Agronomy, 10 (310), 2-16.
45.Macolino, S., Lauriault M. L., Rimi, F., & Ziliotto, U. (2013). Phosphorus and Potassium Fertilizer Effects on Alfalfa and Soil in a Non-Limited Soil. Agronomy Journal, 105(6), 1613-1618.
46.Vadivelu, A., & Wong, M. T. F. (2017). Soil Depth and Plant Biomass Allocation Determine Nutrient Limitation in a Tropical Forest. Journal of Ecology and Environment, 41(1), 91-112.
47.Soleimani, A., Hosseini, S. M., Massah Bavani, A. R., Jafari, M., & Francaviglia, R. (2019). The Effects of Tree Species on Soil Organic Carbon and Soil Properties in Natural Forest and Plantations of Northern Iran. Journal of Environment Science Technology, 21(9), 173-184. [In Persian] 48.Abubakar, S. M., (1997). Monitoring Land Degradation in the Semiarid Tropics using an Inferential Approach: The Kabomo basin case study, Nigeria. Land degradation & development, 8(4), 311-323. doi:10.1002/(SICI)1099-145X(199712)8:4<311: AID-LDR262> 3.0.CO;2-8.
49.Wang, T., Zlotnik, A., Wedin, D. V., & Wally, K. D. (2008). Spatial Trends in Saturated Hydraulic Conductivity of Vegetated Dunes in the Nebraska Sand Hills: Effects of Depth and Topography. Journal of Hydrology, 349, 88-97. doi: 10.1016/j.hydrol.2007.10.027. 50.Safadoust, A., Mosadeghi, M. R., Mahboubi, A. A., Norouzi, A., & Asadian, Gh. (2007). Short-term Tillage and Manure Influences on Soil Structural Properties. Water and Soil Science (Journal of Science and Technology of Agriculture and Natural Resources, 11(41), 91-99. [In Persian] | ||
|
آمار تعداد مشاهده مقاله: 203 تعداد دریافت فایل اصل مقاله: 58 |
||