
تعداد نشریات | 13 |
تعداد شمارهها | 650 |
تعداد مقالات | 6,788 |
تعداد مشاهده مقاله | 9,559,901 |
تعداد دریافت فایل اصل مقاله | 8,993,863 |
تاثیر ساختار مورفولوژیک بر حضور میکروپلاستیک در منطقه هایپریک رودخانه زیارت | ||
مجله پژوهشهای حفاظت آب و خاک | ||
دوره 32، شماره 2، تیر 1404، صفحه 183-199 اصل مقاله (1.03 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2025.22889.3767 | ||
نویسندگان | ||
نسیم شعبانی1؛ مهدی مفتاح هلقی* 2؛ امیراحمد دهقانی3؛ حسن رضائی4؛ محمد عبدالحسینی5 | ||
1دانشآموخته دکتری مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
2نویسنده مسئول، دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
3استاد گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
4دانشیار گروه محیطزیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
5استادیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
چکیده | ||
سابقه و هدف: ناحیه هایپریک یک ناحیه اشباع بینابینی زیر بستر رودخانه و جدارههای آن است که شامل بخشی از جریان رودخانه میشود که به داخل بستر نفوذ کرده است و کارکرد بسیار مهمی در اکولوژی جانداران دارد. در این ناحیه، قسمتی از جریان آب سطحی اکسیژن و مواد مغذی را به جانداران میرساند و پس از طی زمان معینی دوباره به آب سطحی باز میگردد. در رودخانهها، میکروپلاستیکهای کوچک و سبک وزن به پایین دست منتقل میشوند، اما اغلب در رسوبات بستر رودخانه نیز یافت میشوند که ماندگاری طولانی مدت را نشان میدهد. این مطالعه به بررسی توزیع و خصوصیات میکروپلاستیک در رسوب منطقه هایپریک رودخانه زیارت پرداخته است. مواد و روشها: این مطالعه به بررسی حضور میکروپلاستیک در رسوب منطقه هایپریک رودخانه زیارت پرداخته است. برای این منظور، نمونهبرداری از منطقه هایپریک در سه ساختار مختلف مورفولوژیک (جزیره، کنده و پله-حوضچه) در فصل تابستان انجام و رسوبات این منطقه جهت بررسی وجود میکروپلاستیک به آزمایشگاه منتقل شد. نمونهبرداری از سه نقطه در هر محل انجام گرفت. ذرات میکروپلاستیک از نظر اندازه در چهار دسته کمتر از 500 میکرومتر، بین 500 تا 1000 میکرومتر، 1000 تا 3000 میکرومتر و 3000 تا 5000 میکرومتر قرار گرفتند. اشکال میکروپلاستیک به فیبر، گلوله، رشته و قطعه تقسیم شدند. رنگ ذرات میکروپلاستیک نیز با توجه به رنگ سطح آنها ثبت شد. شناسایی نوع پلیمر با دستگاه FTIR انجام شد. با استفاده از روش آماری تحلیل واریانس چندمتغیره یک طرفه (MANOVA)، ارتباط بین میکروپلاستیک و ساختار بررسی شد. یافتهها: نتایج این مطالعه نشان میدهد که میکروپلاستیک در سه ساختار مورفولوژیکی شامل جزیره، کنده و پله-حوضچه وجود دارد. بیشترین فراوانی میکروپلاستیک برای ذرات با مقیاس (<1000 میکرومتر) است. میکروپلاستیکهایی به شکل رشته و فیبر بیشترین فراوانی را در این سه ساختار مورفولوژیکی دارند. رنگ غالب مشاهده شده میکروپلاستیکها در رسوبات شامل مشکی بود. نوع پلیمر ذرات نیز پلی اتیلن بوده است. بررسی آماری ارتباط بین میکروپلاستیک و ساختارهای مختلف مورفولوژیک نشان داد که تفاوت معناداری بین اندازه و شکل میکروپلاستیک و ساختارهای مورفولوژیک در رودخانه زیارت وجود ندارد. نتیجهگیری: نتایج بهدستآمده نشان میدهد که میکروپلاستیکهای کوچکتر از 1000 میکرومتر در مقیاس منافذ به طور بالقوه فراوانترین کسر اندازه را در رسوبات رودخانه زیارت نشان میدهد. از آنجایی که بسیار بعید است که این مورد فقط برای رودخانه زیارت باشد، میتوان نتیجه گرفت که اهمیت میکروپلاستیکها با اندازه در مقیاس مختلف و پایینتر برای سایر سیستمهای رودخانه نیز قابل توجه است. با توجه به تاثیر نوع طبقهبندی بر تحلیل نتایج، میتوان انتظار داشت که با تحلیل نتایج در اندازه تفکیک کوچکتر طبقات، حضور میکروپلاستیکها در اندازههای با تفکیک کوچکتر در رسوبات بستر رودخانه بهطور چشمگیری افزایش مییابد. یکی از ویژگیهای رودخانه زیارت در محل نمونهبرداری پژوهش حاضر، نزدیکی محل نمونهبرداری به تصفیهخانه میباشد. لذا در تجمع میکروپلاستیکهای این محدوده که هم محل بازدید گردشگران و هم محل حضور تصفیهخانه است میتوان نقش بیشتر را به تصفیهخانه نسبت داد. ضمن آنکه حضور فیبر با فراوانی بالا در منطقه که منشا اصلی آن فاضلابهای خانگی است تاییدی بر این مدعا است. واژههای کلیدی: منطقه هایپریک، میکروپلاستیک، جزیره، کنده، پله-حوضچه. | ||
کلیدواژهها | ||
منطقه هایپریک؛ میکروپلاستیک؛ جزیره؛ کنده؛ پله-حوضچه | ||
مراجع | ||
1.Woessner, W. W. (2017). Hyporheic zones. In Methods in Stream Ecology 1 (pp. 129-157). Academic Press.
2.Movahedi, N., Dehghani, A., Schmidt, N., Trauth, N., & Meftah Halaghi, M. (2020). Comparison of Hyporheic Exchanges in 2D and 3D Riffle-Pool, Journal of Civil Engineering, 52(8), 13.
3.Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29, 59-81.
4.Frei, S., Piehl, S., Gilfedder, B. S., Löder, M. G. J., Krutzke, J., Wilhelm, L., & Laforsch, C. (2019). Occurence of microplastics in the hyporheic zone of rivers. Scientific reports, 9(1), 1-11.
5.Alimohammadi, M., Nabizadeh Nodehi, R., Yunesian, M., Hashemi, S. Y., & Karimyan, K. (2017). A Review of Microplastics, Threat to the Environment and Human Health. 2nd International and 20th National Conference on Environmental Health and Sustainable Development. Yazd, Iran.
6.Arthur, C., Baker, J. E., & Bamford, H. A. (2009). Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA.
7.Kershaw, P. J., & Rochman, C. M. (2015). Sources, fate and effects of microplastics in the marine environment: part 2 of a global assessment. Reports and Studies-IMO/FAO/ Unesco-IOC/ WMO/ IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Eng No. 93.
8.Crawford, C. B., & Quinn, B. (2016). Microplastic pollutants. Elsevier Limited.
9.Capozzi, F., Carotenuto, R., Giordano, S., & Spagnuolo, V. (2018). Evidence on the effectiveness of mosses for biomonitoring of microplastics in fresh water environment. Chemosphere, 205, 1-7.
10.Nam, S. H., Kim, S. A., Lee, T. Y., & An, Y. J. (2023). Understanding hazardous concentrations of microplastics in fresh water using non-traditional toxicity data. Journal of Hazardous Materials, 445, 130532.
11.Yang, L., Kang, S., Luo, X., & Wang, Z. (2024). Microplastics in drinking water: A review on methods, occurrence, sources, and potential risks assessment. Environmental Pollution, 123857.
12.Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I., & Thompson, R. C. (2014). Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth's Future, 2(6), 315-320.
13.Ganie, Z. A., Mandal, A., Arya, L., Sangeetha, T., Talib, M., & Darbha, G. K. (2024). Assessment and accumulation of microplastics in the Indian riverine systems: Risk assessment and implications of translocation across the water-to-fish continuum. Aquatic Toxicology, 272, 106944.
14.Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(1), 2.
15.Wagner, S., Klöckner, P., Stier, B., Römer, M., Seiwert, B., Reemtsma, T., & Schmidt, C. (2019). Relationship between discharge and river plastic concentrations in a rural and an urban catchment. Environmental Science & Technology, 53(17), 10082-10091.
16.Dichgans, F., Boos, J. P., Ahmadi, P., Frei, S., & Fleckenstein, J. H. (2023). Integrated numerical modeling to quantify transport and fate of microplastics in the hyporheic zone. Water Research, 243, 120349.
17.Bao, K., Jiang, H., Su, P., Lu, P., & Yan, Z. (2023). Vertical Profiles of Microplastics in the Hyporheic Zone Sediment: A Case Study in the Yangtze River, Nanjing Section. Sustainability, 15(10), 7895.
18.Poole, G. C., O’Daniel, S. J., Jones, K. L., Woessner, W. W., Bernhardt, E. S., Helton, A. M., Stanford, J. A., Boer, B. R., & Beechie, T. J. (2008). Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems. River Research and Applications 24, 1018-1031.
19.Buss, S., Cal, Z., Cardenas, B., Fieckenstein, J., Hannah, D., Heppell, K., Hulme, P., Ibrahim, T., Kaeser, D., Krause, S., Lawier, D., Lerner, D., Mant, J., Malcolm, I., Old, G., Parkin, G., Pickup, R., Pinay, G., Porter, J., Rhodes, G., Richie, A., Riley, J., Robertson, A., Sear, D., Shields, B., Smith, J., Tellam, J., & Wood, P., (2009). The Hyporheic Handbook. A Handbook on the Groundwater-Surfacewater Interface and Hyportheic Zone for Environment Managers. Integrated Catchment Science Programme. Science report: SC050070. Environment Agency, Bristol.
20.Wondzell, S. M., & Gooseff, M. N. (2013). 9.13 Geomorphic controls on hyporheic exchange across scales: Watersheds to particles. Treatise on geomorphology, 203-218.
21.Millington, C. E., & Sear, D. A. (2007). Impacts of river restoration on small‐wood dynamics in a low‐gradient headwater stream. Earth Surface Processes and Landforms, 32(8), 1204-1218.
22.Doughty, M., Sawyer, A. H., Wohl, E., & Singha, K. (2020). Mapping increases in hyporheic exchange from channel-spanning logjams. Journal of Hydrology, 124931.
23.Singha, K., Doughty, M., McFadden, S., Hucks Sawyer, A., & Wohl, E. (2020). Mapping increases in hyporheic exchange from channel-spanning logjams. In EGU General Assembly Conference Abstracts (p. 1342).
24.Ren, J., Zhuang, T., Wang, D., & Dai, J. (2023). Water Flow and Heat Transport in the Hyporheic Zone of Island Riparian: A Field Experiment and Numerical Simulation. Journal of Coastal Research, 39(5), 848-861.
25.Coppock, R. L., Cole, M., Lindeque, P. K., Queirós, A. M., & Galloway, T. S. (2017). A small-scale, portable method for extracting microplastics from marine sediments. Environmental Pollution, 230, 829-837.
26.Nuelle, M. T., Dekiff, J. H., Remy, D., & Fries, E. (2014). A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 184, 161-169. 27.Liebezeit, G., & Dubaish, F. (2012). Microplastics in beaches of the East Frisian islands Spiekeroog and Kachelotplate. Bulletin of Environmental Contamination and Toxicology, 89, 213-217.
28.Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M. T., Ebert, M., & Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Science: Processes & Impacts, 15, 1949-1956.
29.Stolte, A., Forster, S., Gerdts, G., & Schubert, H. (2015). Microplastic concentrations in beach sediments along the German Baltic coast. Marine Pollution Bulletin, 99, 216-229.
30.Graca, B., Szewc, K., Zakrzewska, D., Dołęga, A., & Szczerbowska-Boruchowska, M. (2017). Sources and fate of microplastics in marine and beach sediments of the Southern Baltic Sea-a preliminary study. Environmental Science and Pollution Research, 24, 7650-7661.
31.Drummond, J. D., Nel, H. A., Packman, A. I., & Krause, S. (2020). Significance of hyporheic exchange for predicting microplastic fate in rivers. Environmental Science & Technology Letters, 7(10), 727-732.
32.Drummond, J. D., Schneidewind, U., Li, A., Hoellein, T. J., Krause, S., & Packman, A. I. (2022). Microplastic accumulation in riverbed sediment via hyporheic exchange from headwaters to mainstems. Science Advances, 8(2), eabi9305.
33.Rasta, M., Sattari, M., Taleshi, M. S., & Namin, J. I. (2020). Identification and distribution of microplastics in the sediments and surface waters of Anzali Wetland in the Southwest Caspian Sea, Northern Iran. Marine Pollution Bulletin, 160, 111541.
34.Ghanbari Tapeh, N., Fataei, E., Naji, N., Imani, A., & Nasehi, N. (2022). Determination of Frequency, Distribution and Composition of Microplastics in the Waters of Qarasu Ardabil River, Journal of Health, 13(2), 199-212.
35.Hernandez, E., Nowack, B., & Mitrano, D. M. (2017). Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing. Environmental science & technology, 51(12), 7036-7046.
36.Yeganeh, F. M., Shakeri, A., Rastegari, M. M., & Lahijani, O. (2020). Investigating abundance and characteristics of microplastics as emerging pollutants in sediments of Taleqan dam and upstream river in Alborz province. Iranian Journal of Health and Environment, 13 (1), 65-76.
37.Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water research, 75, 63-82.
38.Horton, A. A., Svendsen, C., Williams, R. J., Spurgeon, D. J., & Lahive, E. (2017). Large microplastic particles in sediments of tributaries of the River Thames, UK–Abundance, sources and methods for effective quantification. Marine pollution bulletin, 114(1), 218-226.
39.Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., & Luo, Y. (2018). The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma, 322, 201-208.
40.Bao, M., Xiang, X., Huang, J., Kong, L., Wu, J., & Cheng, S. (2023). Microplastics in the atmosphere and water bodies of coastal agglomerations: A mini-review. International Journal of Environmental Research and Public Health, 20(3), 2466.
41.Cole, M., & Galloway, T. S. (2015). Ingestion of nano plastics and microplastics by Pacific oyster larvae. Environmental science & technology, 49(24), 14625-14632.
42.Avio, C. G., Gorbi, S., & Regoli, F. (2015). Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea. Marine environmental research, 111, 18-26.
43.Arias-Andres, M., Kettner, M. T., Miki, T., & Grossart, H. P. (2018). Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems. Science of the Total Environment, 635, 1152-1159. | ||
آمار تعداد مشاهده مقاله: 96 تعداد دریافت فایل اصل مقاله: 44 |